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1. Introduction

A research joint venture (RJV) is an agreement whereby its members coordinate research
activities and share any subsequent innovations. The literature has examined several incentives
to form a RJV; e.g., avoidance of costly duplications of efforts (Katz 1986), internalization of
technical spillovers (d’Aspremont and Jacquemin 1988, Kamien, Muller and Zang 1992), and
synergy creation (Pastor and Sandonis 2002). Additionally, a RJV can also solve a certain
appropriability problem. Since innovation eventually becomes common knowledge and can be
adopted by rivals, an innovator fails to appropriate the full value of an innovation. This means
that in cases privately funded R&D projects are unprofitable and therefore not undertaken. A
RJV solves this problem by having the R&D costs shared upfront by the eventual beneficiaries
of the innovation (Miyagiwa and Ohno 2002; Erkal and Piccinin 2010).

However, formation of a RJV comes with its own difficulty — an incentive or free-rider
problem. While it appears within any cooperative arrangement, in the case of a RJV the incentive
problem becomes particularly acute for two reasons. First, the members’ contributions to the
venture are mostly in the form of human resources and proprietary technical know-how, the
qualities of which cannot easily be assessed by other participants. Second, R&D outcomes are
inherently stochastic, thereby making it well-nigh impossible to disentangle lack of success due
to shirking from lack of success due to randomness. These two features of a RJV can give rise to
opportunism, as participants are tempted, by the lack of detection, to contribute less than the
level of R&D inputs stipulated in the agreement (Shapiro and Willig 1990).

In this paper we show that a RJV can overcome the free-rider problem by pre-committing
to its termination date. To understand this result intuitively, consider the standard repeated-game

setting. If R&D actions are unobservable and shirking goes undetected, a RJV member faces the



same (stationary) continuation payoff, whether it shirks or makes R&D efforts. In contrast, if a
RJV has the termination date, the continuation payoffs are no longer stationary. In particular, the
continuation payoff falls precipitously when the venture is dissolved and cooperation ends.
Therefore, as the termination date approaches, each member feels an increasingly stronger
incentive to succeed in order to avert the sharp drop in continuation payoff. We show that in fact
there is a unique optimal termination date, i.e., an (ex ante) optimal duration, for a RJV.
Furthermore, our model yields two empirically testable results. First, the optimal duration is
positively related to the value of innovation per member. Second, the optimal duration is
negatively related to the per-member flow cost of R&D.

The model also indicates that the membership size of a RJV affects its optimal duration.
However, there are two conflicting effects. On the one hand, an increase in membership size
reduces each member’s share of the total profit, reducing duration by the first result above. On
the other, the presence of strong synergies and spillovers within a RJV can reduce the effective
R&D cost per member, increasing duration by the second result above.

In the second part of the paper, using data from the European Eureka program, we
examine whether our theoretical model is consistent with the empirical data. Launched in 1985
to promote joint research projects as part of the EU’s innovation policy, the Eureka program
provides our study with an ideal source of data for three reasons. First, each Eureka RJV is
required to include partners from at least two different EU member countries. Since members
often conduct research in separate countries, Eureka’s RJVs face difficulties in monitoring the
quantity and quality of member contributions. Second, each Eureka project applicant is required

to provide detailed information about the prospective RJV, including its termination date. This



means that Eureka RJVs pre-commit to their durations. Thus, Eureka RJVs satisfy two most
important features of our theoretical model.

The Eureka program has an additional advantage in that its data are publicly available on
its website. We thus know that the average Eureka project has the (ex ante) duration of 41.5
months. However, the data exhibit large variations in duration, ranging from six months to 166
months. The central question of our empirical investigation is to explain such variations.

Our theory points to the value of innovation per member as a key determinant of
duration. This relation, however, cannot be evaluated directly because the Eureka data set does
not provide innovation values. Obvious proxies such as the values of patents issued to Eureka
RJVs are also unavailable. Instead, for our primary proxy, we draw upon recent empirical
literature in international trade examining heterogeneity among firms within given industries. We
do so for two reasons. Firstly, this literature establishes that firms that export earn greater profits
than firms that do not. Secondly, more recent research links firm heterogeneity to the types of
R&D firms undertake. In particular, Van Beveren and Vandenbussche (2010) show that firms
pursuing product-and-process innovations are more likely to export than ones aiming at either
purely product or purely process innovations. These two findings suggest that RJVs aiming for
product-and-process innovations have higher commercial values than ones targeting purely
product or process innovations. If so, our theory implies that product-and-process innovation
RJVs commit to longer durations than the other two types of RJVs. Fortunately, the Eureka data
set does specify the types of R&D conducted in Eureka projects. Using the product-and-process
innovation as a proxy variable for the value of innovation, we find that product-and-process
innovation RJVs have longer durations than purely process-innovation or purely product-

innovation RJVs, which is consistent with our theory.



Our theoretical model also predicts that a member’s (flow) R&D cost has a negative
effect on the duration of a RJV. Intuitively, when R&D flow costs are unobservable, there is a
greater incentive to shirk. This increase in opportunism can be countervailed by a shortening of
duration. To examine this effect we construct a monthly per member R&D cost variable from the
Eureka data, and find this variable negatively related to the durations of Eureka projects as
expected from our theory.

As for the effect of membership size, our regression results show that membership has a
positive effect on the durations of Eureka projects, which according to our theory implies the
presence of strong synergies within Eureka RJVs. This finding is consistent with recent empirical
work that has identified synergy and spillovers as the important rationales for forming RJVs
(e.g., Cassiman and Veugelers 2002, Hernan, Marin and Siotis 2003).

The remainder of the paper is organized as follows. Sections 2 — 4 present our theoretical
model. Sections 2 and 3 discuss the stability of a RJV when R&D efforts are observable and
when they are not, respectively. Section 4 shows how, when R&D efforts are unobservable, a
RJV can overcome the free-rider problem by specifying its termination date. Section 4 also
derives the main predictions of the model. The empirical analysis is contained in sections 5 — 8.
Section 5 discusses the Eureka data. Section 6 explains our methodology. Section 7 presents the
estimation results. Section 8 checks the robustness of our empirical findings. The final section

states our conclusions and suggests extensions for future research.

2. RJVs with observable R&D actions
Consider m (= 2) symmetric firms interacting over an infinite number of periods. All

actions take place at dates t = 1, 2,.... Suppose that firms form a RJIV att=1. At each t > 1, each



firm unilaterally decides whether to invest the amount k or not. If z (< m) firms invest k at t, then
at date t + 1 there is innovation with probability 1 — ¢(z), where ¢(z) measures the venture’s
(conditional) probability of failure to discover innovation. The innovation yields the flow of
profits, the sum of which is worth « to each member firm in t + 1’s value. We assume that a RJV

has a better chance of success when more members make R&D efforts.

Assumption 1: The RJV’s (conditional) probability ¢(z) of failure to discover innovation is

. 1
monotone decreasing.

We assume that firms are incapable of innovation when acting alone.” This may be the
case if R&D costs are too high or innovation is too risky (i.e., probability of innovation is too
low) for an individual firm. For the moment we disregard the effects of synergy and spillovers
within a RJV.

In the remainder of this section, we consider the benchmark case, in which firms can
observe one another’s R&D actions. Suppose that firms play the following grim trigger strategy;
att=1 invest k in R&D, and at all t > 2, conditionally on innovation not having been discovered,
invest k as long as all firms have done so to date; otherwise break up the RJV.

Below we write ¢, for ¢(z) to lighten notation. If all m firms adopt the above strategy, at
each date t the RJV discovers innovation with the (conditional) probability 1 — ¢,,. If there is no
success at t, firms face exactly the same prospect at t + 1 due to the stationary environment.

Thus, the expected equilibrium payoff V satisfies the recursive equation:

" The literature often assumes that ¢(z) = q”, where q is each firm’s individual probability of failure. Since q” < q,
firms can pool risks by forming a RJV.
* This assumption can be relaxed without affecting the main results of the analysis.



=—k+(1-¢,)0n+ 0,0V,
where 0 € (0, 1) is the discount factor. Collecting terms yields
(1) V=(k+({-0,)0m)/(1- b, J).
We assume that V > 0, implying that it is worthwhile to form a RJV.
A (one-period) deviation from the above strategy allows a shirking firm to save the R&D
cost k but also increases the venture’s probability of failure to ¢, > ¢,. In addition, shirking
triggers termination of a RJV, meaning that a shirking firm expects the payoff (1 — ¢, ,)or.’

There is no shirking if and only if V> (1 — ¢, ,)0m.

3. RJVs with unobservable R&D actions

Now, assume that firms cannot observe one another’s R&D actions. If all firms invest in
R&D, the expected payoff per firm is still V as defined in (1) above. However, shirking now
becomes undetected and hence unpunished. Consequently, shirking only results in an increase in
a RJV’s probability of failure without triggering its dissolution, thereby yielding the expected
payoff
(2) Vq=U0-9,,)0m+ 0,0V
to a shirker. Therefore, there is no shirking if and only if
3) V-V =-k+An0(n - V),
where

AmE¢m—l_¢m>0

? Assume, for simplicity, that other firms cannot exclude a shirker from access to innovation discovered at t. This
assumption is inconsequential for the discussion to follow.



due to monotonicity of ¢,,. While © > V, the right-hand side of (3) can be negative, if, for
example, R&D cost k is sufficiently large. Focusing on such cases, we assume that a RJV is

unstable when R&D actions are unobserved.

Assumption 2: V<V,

4. The optimal duration for a RJV
Under Assumption 2 a RJV is unstable under the standard repeated-game setting.
However, the members can still form a RJV if they pre-commit to dissolving the venture at some
future date. To demonstrate this case, consider a one-period RJV. As it gets terminated at t = 2,
firms get just one chance to cooperate, namely, at t = 1. If they all invest k in R&D, the payoff to
each firm (at t = 1) equals
R(1)=-k+ (1 - ¢,)omn.
As before, a shirking firm saves k and lowers the probability of innovation, expecting the payoff
R (1) = (1 - ¢,,,)0m.
There is no incentive to shirk if

R(1)—Ry(1) ==k + Andrn >0,

A comparison of this with equation (3) implies that

R(1)-Ry(1)>V -V,

Result 1: There are a k and a function ¢(z) satisfying

Andn >k > And(m — V).



so that

R(1)-Ry(1)=0>V -V,

Result 1 says that each member makes an R&D effort under Assumption 2. We obtain this result
for the following intuitive reason. Since a one-period RJV gets terminated after t = 1, at t = 2 the
continuation payoff equals zero instead of V as in section 2. This drop in continuation payoff
motivates firms to succeed att = 1.

Next, supposing that R(1) — R;(1) > 0, consider a two-period RJV. With two periods to
cooperate, a failure at t = 1 gives firms one more chance to succeed at t = 2, with the expected
payoff OR(1). Therefore, investment in R&D at t = 1 yields the expected profit

RQ2)=-k+ (1 -¢,)0n + 0,0R(1).
A generalization to an n-period RJV is straightforward. The expected profit is given by
this analogous equation:
R(n)=-k+(1-¢,)0n + 0,0R(n—1).
This is a first-order difference equation with the solution given by
4 R(n) = [1 - (86,,)"]V.
Since d,, < 1, R(n) is monotone increasing, approaching V as n goes to infinity. Intuitively,
terminating a RJV at infinity amounts to never terminating it, hence yielding the payoff V.

We next examine a member’s incentive to shirk (at t = 1). As before, shirking saves cost

k but reduces the probability of success, yielding the expected profit

(5) R m) = (1 - ¢, )0n + ¢, ,0R(n—1).

There is no incentive to shirk if the following difference in payoff is non-negative



(6) R(n) — Ry(n) = — k + An, 3(m — R(n — 1)).

The right-hand side of (6) is monotone decreasing in n since, as already established, R(n) is
monotone increasing. Thus, the incentive to shirk increases with duration n. Further, by

substituting the definition of V4 from equation (2), equation (5) can be rewritten as

R )=V, -6,0(V-R(n-1)).
As n goes to infinity, R(n) approaches V, and hence R 4(n) approaches V. These two limit
results imply that, as n goes to infinity, R(n) — R 4(n) goes to V — V, which is negative under

Assumption 2. Therefore, there is a limit to the number of periods in which firms cooperate as a

RJV. Monotonicity implies that this limit is unique.

Result 2: If R(1) — R,(1) = 0, there exists a unique integer n* > 1 such that

(7) R(n*) — Ry(n*) > 0> R(n* + 1) - Ry(n* + 1).

Result 2 says that a RJV can be sustained for the maximal duration of n*. Further, since
R(n) is strictly increasing, R(n*) represents the maximal expected payoff per firm. We state this

result formally,

Proposition 1: The n*, defined in result 2, represents the optimal duration of a RJV.

We have shown here that, even if cooperation in R&D is inherently unstable, firms can still form

a RJV by pre-committing to the termination date.
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We next address the question of what determines the optimal duration. According to the
model, the key determinants are the profit per firm (n) and the R&D cost per firm (k). Examining
the role of m in (6), we observe that, as m increases, the difference, 1 — R(n - 1), increases since

R(n - 1) contains © only with positive probability. Therefore, R(n) — R;(n) increases, and n* can

be increased by Result 2. This gives us the following proposition.

Proposition 2. The higher the value of innovation per firm, the longer the optimal duration of a

RJV.

Next, an increase in k increases the payoff from shirking, making shirking more
attractive. Such a rise in opportunism can be curbed by a shortening of the duration of a RJV.

This gives the next proposition (proof in Appendix 1).

Proposition 3. The higher the R&D cost per firm, the shorter the optimal duration of a RJV.

The duration of a RJV also depends on the size m of its membership. We show in
Appendix 2 that an increase in m shortens the optimal duration. Two intuitive reasons underlie
this result. First, with an increase in m each firm has a lesser impact on the venture’s joint
probability of success and hence less of the incentive to cooperate. This diminished incentive for
cooperation can be redressed by a shortening of duration. Second, for any given total value of
innovation, an increase in m decreases the value of innovation per member. Applying

proposition 2, this result calls for decreasing the duration.



11

The above result is obtained without consideration of possible synergy that may arise
from cooperation among RJV members. As noted in the introduction, however, recent empirical
studies emphasize the generation of synergy and spillovers as the main rationale for forming
RIJVs. There is no reason to believe that Eureka RJVs are exceptions to those findings. In fact, as
shown in Appendix 2, introduction of synergy and spillovers into our model can reverse the
above conclusion. Therefore, determining the effect of membership size on the duration of a RIV
is an empirical matter. If m has a positive impact on duration in our empirical study, we conclude

that synergies play an important role in the formation of Eureka RJVs.

5. A description of the data from the Eureka program

In this section we begin our empirical examination of the factors influencing the optimal
duration of a RJV. As stated already, our empirical analysis utilizes the data from the European
Eureka program. Since its inception in 1985 and until 2004, the Eureka program spawned 1,716
RJVs, involving 8,520 participants from 38 countries.” Among those participants, 4,698 were
European firms, and 1,937 were European universities, research centers and national institutes;
the remainder came from outside EU-15 member countries.’

More detailed information on individual Eureka RJVs is publicly available on the
program’s website.’ The Eureka data set includes the initiation years, durations, and costs of all

Eureka projects. The main industry designations of the RJVs are also available; the majority of

4 Our data exclude RJVs initiated after 2004 as well as the ones that were launched between 1985 and 2004 but have
not been completed to date.

* Table Al in the appendix describes the RJV characteristics in details.

¢ www .eurekanetwork.org.
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the Eureka RJVs are in manufacture, with some in agribusiness and services sectors.” When it
comes to Eureka’s participants, however, the information is scanty; only their names, addresses
and nationalities are available. Thus, the Eureka data set provides us with only the RJV-level
data but not the firm-level data.

For our empirical analysis we select 1,641 commercial RJVs, i.e., RIVs organized to
discover product and/or process innovations. In the academic literature it is customary to classify
innovations into two types: product innovation which creates a new product or one of better
quality and process innovation which introduces a new cost-reducing technology. In reality,
however, many innovations have attributes of both. Recognizing this fact, the Eureka data
classify the innovations into three types, namely, product innovation, process innovation and
product-and-process innovation.

Table 1 presents the descriptive statistics of the commercial RJVs in our data set. The
average RJV consists of 5.1 partners, of which 3.4 are firms, and costs 34,000 euros a month per
partner to run.® The average duration is 41.5 months.” This average is based on the duration data
taken from the applications submitted to the Eureka program, so it is the average over the ex ante
durations. As for the type of innovations, 23 percent of Eureka RJVs in our data set pursue
product-and-process innovations while 59 percent aim at product innovations; the remaining 18
percent target process innovations.

[Table 1 about here]

7 Defined by two-digit NACE categories. NACE is the European economic activities classification system, similar
to the American SIC system. The NACE classification is available from the EUROSTAT website:
http://ec.europa.eu/eurostat/ramon.

¥ Our data includes some exceptional cases. The most costly Eureka RJV spent 4 billion euros in R&D, involved 19
partners and lasted 96 months. The largest Eureka RJV had 196 partners, spent 796 000 € and had a duration also of
96 months. The results in section 7 are not affected by these extreme cases.

? Time is expressed in months.
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6. Methodology

Although the average duration of a Eureka RJV is 41.5 months, there are significant
variations in duration across Eureka projects. We investigate what factors could generate such
variations. Initial tests reveal that the residuals of the OLS regressions on the Eureka data are not
distributed normally.'® Consequently, we construct an empirical model based on survival or
duration analysis in the same way as in Vandenbussche and Zanardi (2008). In our survival
analysis, the ‘death’ of a RJV is considered an event.

More specifically, we use proportional hazard models in our analysis. The central
assumption of these models is that the hazard 4;(?), or conditional probability of death of an
individual RJV j, is split into two parts as in

hi()= ho(t) exp(x; ).
The first term, Ay(?), is the baseline hazard, i.e., the common hazard assumed to be faced by all
Eureka RJVs. The exponential part captures the idiosyncratic characteristics of individual RJVs
J, where x; represents the row vector of all the explanatory variables for RJV j and B« the column
vector of the coefficients of the explanatory variables. The proportional hazard function assumes
that at each date t RJV j’s hazard is a constant proportion of the baseline hazard /(z); that is,
each individual RJV’s hazard is “parallel” to the baseline hazard.

The most general proportional hazard model is the Cox model, which does not impose a
specific functional form on /y(?). If a prior reason exists to believe that /y(?) follows a particular
form, the Cox model can be further specified. For example, the belief that the baseline hazard

follows a Weibull distribution leads to the Weibull proportional hazard model, which allows /()

' The Jacque-Bera normality test performed on the error terms in OLS residuals is rejected for our Eureka data. It is
found that the error terms of the regression on the log of RJV durations follows the type 1 extreme value (EV1)
distribution.
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to be increasing, decreasing or constant over time. More specifically, in the Weibull model %(?)
takes the form p#’exp (By), where p is the ancillary parameter determining the shape of the
hazard function.!" When p is above (below) one, the hazard rate is increasing (decreasing). For p
equal to one, the hazard rate remains constant and the Weibull model becomes an exponential
proportional hazard model. In our case, there is evidence to suggest that the baseline hazard for
RJVs is increasing over time (see Kogut, 1989). Therefore, we choose the Weibull model as our
basic empirical model.

We next discuss our choice of explanatory variables. Our theoretical model suggests
innovation value, flow R&D costs and membership size as key explanatory variables. As already
mentioned in the introduction, however, the values of innovations are not available for Eureka
projects, so they must be proxied. As our proxy, we choose the product-and-process innovation
dummy variable, which takes the value one if a RJV targets a product-and-process innovation
and the value zero otherwise.'” The selection of this proxy variable is, as we briefly mentioned in
the introduction, motivated by recent evidence from the international trade literature
investigating firm heterogeneity within industry categories. This literature shows that firms that
export their products tend to have higher productivity, employ more workers, and pay higher
wages than ones that do not export."> More recent studies attribute this firm heterogeneity to the
types of R&D undertaken by the firms.'* In particular, Van Beveren and Vandenbussche (2010)

find that firms targeting product-and-process innovations are more likely to export than ones

"' This specificity in functional form makes the Weibull model more restrictive but more efficient relative to the Cox
model.

"> This variable is constructed from the description of the RJVs available on the Eureka website:
www.eurekanetwork.org, not from the Community Innovation Survey (CIS) data.

13 See for instance Aw and Hwang (1995), Roberts and Tybout (1997) and Bernard and Jensen (1999), Melitz
(2003), Yeaple (2005) and Bustos (2011).

' See for instance Ebling and Janz (1999), Becker and Egger (2009), Damijan et al (2010) and Cassiman et al
(2010).
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targeting only product or process innovations."> These findings suggest that Eureka RJVs with
product-and-process innovations expect higher returns from their R&D than ones with the other
types of innovations. Thus, proposition 2 suggests this dummy variable to have a positive impact
on the duration of a RJV.

The second explanatory variable to consider is the monthly R&D cost per member
variable, constructed by dividing the total cost by the number of the members of a RJV and by its
ex ante duration (in months). If this variable captures the flow R&D input stipulated in the RJV
agreement, Proposition 3 implies that it has a negative impact on the duration of a RJV.

The third explanatory variable is the RJV membership. As discussed in section 4, the
theoretical model cannot pin down the effect of this variable. As we explicated in the previous
section, if strong synergies are present within Eureka RJVs, we expect this variable to have a
positive effect on the duration of a RJV.

The Eureka data contains other interesting information, from which we construct three
types of control variables. The multi-sector RJV dummy variable takes the value one if RJV has
members drawn from more than one industry and the value zero otherwise.'® The main industry
dummy variables capture the characteristics of the main industry of the Eureka RJV, while the
RJV initiation year dummy variable reflects the economic environment prevailing in the year

when the RJV was launched.

7. Empirical results

" Van Beveren and Vandenbussche (2010) focus on new exporters to control for the endogeneity associated with the
relationship between innovation and exports. In a study on innovation in the U.K., Simonetti, Archibugi and
Evangelista (1995) suggest that the number of product-and-process innovations in the U K. is underestimated. Van
Beveren and Vandenbussche (2010) address this issue by making the distinction between single product or single
process innovations on the one hand and product-and-process innovations on the other.

'® The definition of the multi-sector variable is taken from Bernard et al. (2010).



16

Columns 1 through 5 of Table 2 display our regression results from five empirical
models. Consistent with the standard procedure in duration analysis, the estimates are expressed
in terms of the hazard ratios, instead of the coefficients, of the explanatory variables.'” The null
hypothesis is that the hazard ratio of the explanatory variable equals one, i. e., the explanatory
variable has no effect on duration of a RJV. If the hazard ratio is less than (greater than) one, the
explanatory variable increases (decreases) the duration of a RJV. Our preferred model is in

column 5, which contains all the explanatory variables discussed in section 6.

[Table 2 about here]

Each row in Table 2 displays the hazard ratio of the named explanatory variable. In all
the columns, the hazard ratio of the product-and-process innovation variable is clearly
significant and less than one as predicted by Proposition 2. In particular, the result in column 5
indicates that a RJV targeting a product-and-process innovation has a duration 13.8% longer than
a RJV aiming for a purely product or process innovation.

Columns 2 through 5 show the hazard ratios of the logarithm of the monthly RJV cost per
partner variable. They are significant and clearly exceed unity as expected from Proposition 3. In
particular, the value in column 5 implies that a one-percent increase in the monthly RJV cost per
partner variable decreases the RIV duration by 0.125%.'®

The RJV membership size variable has a hazard ratio of less than one in all columns 2

through 5. According to our theory, this suggests the presence of strong synergy and spillovers

"7 The hazard ratio of the logarithm of a continuous variable represents the effect of a one-percent change in value of
the continuous variable. As for a discrete variable, say, x,, as it is incremented by 1, its hazard ratio is given by the
rate hy(t) exp(B; x; + B2 (x2+1)) over the ‘initial’ hazard rate hy(2) exp(B; x; + B2 X2 ), and hence equals exp(f,).

"® The RJV cost variable is in million euros.
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within the Eureka RJVs. This finding is consistent with recent empirical work. For example,
Hernan, Marin and Siotis (2003) find that Eureka firms have greater incentives to form RJVs in
industries in which knowledge spillovers proceed more quickly. Likewise, Cassiman and

Veugelers (2002) find similar results for Belgian firms.

8. Robustness

In this section we apply alternative model specifications to check the robustness of our
results in Table 2. A first check concerns the assumption that the baseline hazard follows the
Weibull distribution. To address this issue, we employ the Cox proportional hazard model. If the
Weibull model is a good representation of Eureka RJVs, then the Cox model should yield results
similar to those in Table 2, since it imposes no specific functional form on the baseline hazard.
The results with the Cox model are displayed in column 6 of Table 3."” A remarkable similarity
of the results in column 6 and column 5 of Table 2 (which is reproduced in Table 3) confirms the

appropriateness of the Weibull model as our main empirical model.

[Table 3 about here]

We next consider the possibility that our data does not capture every characteristic of
Eureka RJVs, i.e., the possibility that any two RJVs appearing completely identical have
different durations due to some unobserved heterogeneity. To check this, we first compute the

conditional probabilities of RJV deaths from our sample population. The results are displayed in

" If the Cox model fits the data, the Cox-Snell residuals form a 45-degree line. The goodness of fit of our Cox
model is demonstrated in figure A2 of the appendix, where it is seen that the empirical Nelson-Cumulative hazard
function (a proxy for the Cox-Snell residuals) closely follows the 45-degree line. For more details, see Cleves et al.
(2010).
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Figure 1.%° If these conditional probabilities are regarded as a non-parametric approximation of
the baseline hazard of the population, then Figure 1 displays non-monotonic hazard rates,
implying that shorter-duration RJVs and long-duration RJVs may have different baseline hazards

(Cleves et al., 2010).

[Figure 1 about here]

To examine this possibility, we employ the frailty Weibull model.*' This version
modifies the basic Weibull model by assuming that the baseline hazard takes the form Zh(?),
where Z is the multiplicative random variable capturing unobserved individual characteristics.
The procedure yields the results in column 7 of Table 3, which show remarkable similarity to the
values reported in column 5.

Our next robustness check concerns the possibility that the results based on the basic
Weibull model in Table 2 may be driven by time. To address this issue, we run regression using
the exponential hazard model, in which the baseline hazard remains constant over time by
assumption. Our estimation results are presented in column 8 of table 3 and are qualitatively the
same as those in column 5.

Summarizing this section, we observe that the alternative model specifications yield
regression values quite similar to those of the basic Weibull model, thus supporting our results in

the preceding section.

9. Concluding remarks

%0 Note that each period represents a two-year interval.
*! The frailty model in duration analysis is comparable to the panel data model with random effects.
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The members’ contributions to a RJV consist mostly human resources and proprietary
technical know-how, and these qualities and quantities are not easily verifiable by other
members. This means that a RJV often encounters a serious incentive problem. In this paper we
first develop a model in which a RJV overcomes this problem by pre-committing to the date of
dissolution. We characterize the optimal termination date or duration of a RJV. We then show
that the optimal duration increases with the value of innovation per member and decreases with
the flow R&D cost stipulated in the agreement. These results provide us with empirically testable
hypotheses.

In the second half of the paper we examine the factors determining the duration of RJVs
in the European Eureka program. First, drawing on recent empirical literature in international
trade, we choose the product-and-process innovation dummy variable as a proxy for per-firm
innovation values. We find that this variable has the hazard ratios significant and less than unity,
as is consistent with Proposition 2 of our theoretical model. Second, the monthly R&D cost per
partner dummy has the hazard ratios exceeding unity, implying that a higher flow cost leads to a
shorter duration, as predicted by Proposition 3. In addition, the membership size variable has the
hazard ratios less than one, which according to our theory implies the presence of strong synergy
within a Eureka RJV. This result is also consistent with other recent empirical work.

A couple of extensions suggest themselves for future work. Firstly, our theoretical model
assumes symmetry among member firms, but in reality RJVs often include quite diverse
members. It is worth exploring the effect of such heterogeneity as regards the venture’s optimal
duration. Member heterogeneity also gives rise to a new set of incentive and policy questions.
For example, which member is most likely to defect and hence is the most critical in the stability

of a RJV? Secondly, this paper takes the formation of a RJV as given. It is worthwhile to
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consider how a RJV is formed, given a large number of potential members. In the same vein, it is
also a worthwhile exercise to extend the analysis to the case in which a RJV competes with
outside firms or a rival RJV.

Our empirical analysis can be extended in several directions. Firstly, broader firm-level
databases should be built for testing whether additional firm characteristics affect the stability of
RJVs. Secondly, our analysis can also be extended to other R&D programs. For example, while
the Eureka program is designed to promote commercial innovations, the EU has a sister program
called the European Framework program, designed to subsidize firms and research institutes
engaged in basic research. An extension of this research to the latter program may well uncover
interesting differences in the ways basic and commercial innovations affect the behavior of
RJVs. Thirdly, the U.S. Department of Commerce, under the ATP (Advanced Technology
Program), used to collect detailed information, including durations, from perspective RJVs
which seek exemption from antitrust investigations. Although this program is now defunct, our
analysis should be able to throw light on the determination of the RJV durations under this

program.



Tables and Figures

Table 1: Characteristics of all the commercial Eureka RJVs
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Obs Mean Std. Dev. Min Max
RJV duration (Months) 1641 41.54 20 6 166
Product-and-process innovation 1641 0.23 0.4
Product innovation 1641 0.59 0.5
Multi-sector RJV 1641 0.68 0.5
Number of partners 1641 5.1 8 2 196
Number of partner firms 1641 3.4 4 1 96
Monthly cost per partner (€ Million) 1641 0.035 0.1 0.001 2.7

Note. Table I reports the summary statistics for the 1,641 commercial Eureka RJVs (1985-2004).

See the description of the variables in Appendix.



Table 2: The durations of Eureka RJVs
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Weibull model

1 2 3 4 5
Product-and-process innovation 0.565*** 0.848** 0.893* 0.817* 0.862**
(0.100) (0.063) (0.059) (0.070) (0.059)
Number of firms 0.925*** 0.935*** 0.935*** 0.930***
(0.014) (0.015) (0.020) (0.016)
y;’;:g’lyl:g‘l’)s‘ per partner (in 1.095%** 1.134%% 1.209*** 1.125%*
(0.030) (0.030) (0.050) (0.029)
Multi-sector RJV 0.983 0.971 0.909 0.896*
(0.066) (0.057) (0.074) (0.055)
Initiation year dummies NO NO YES NO YES
Main sector dummies NO NO NO YES YES
Shape parameter p 2.191*** 2.293*** 2.809*** 3.831*** 2.911%**
(0.052) (0.052) (0.061) (0.156) (0.057)
Observations 1641 1641 1641 1641 1641

Note. Table 2 summarizes the regressions results of the Weibull proportional hazard models
where the product-and-process innovation is used as the proxy variable for the innovation value.
Robust standard errors are in brackets. *** denotes significance at the I percent level, ** at the
5 percent level and * at the 10 percent level. The ancillary parameter p of the Weibull model is

reported with the robust standard errors.



Table 3: Robustness
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Robustness checks

5 6 7 8

Product-and-process innovation 0.862** 0.880** 0.817** 0.941***

(0.059) (0.051) (0.069) (0.210)
Number of firms 0.930*** 0.945*** 0.935*** 0.982***

(0.016) (0.014) (0.020) (0.005)
y;’;:g’lyl:g‘l’)s‘ per partner (in 1125+ 1103+ 1,209 1.050***

(0.029) (0.025) (0.050) (0.010)
Multi-sector RJV 0.896* 0.920 0.909 0.974

(0.055) (0.051) (0.074) (0.021)
Initiation year dummies YES YES YES YES
Main sector dummies YES YES YES YES
Shape parameter p 2.911%* 3.830***

(0.057) (0.156)
Observations 1641 1641 1641 1641

Note. Table 3 summarizes the regressions results from the Weibull model (column 5), the Cox
model (column 6), the frailty Weibull model (column 7), and the exponential model (column §8).
Column 5 is reproduced from table 2. The product-and-process innovation dummy variable
serves as a proxy for the RJV innovation value. Robust standard errors are in brackets. ***
denotes significance at the 1 percent level, ** at the 5 percent level and * at the 10 percent level.



Figure 1: Conditional mortality rates of the Eureka RJVs population over time
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Appendices
Appendix 1: Proof of proposition 3
Differentiating (6) yields
(A1) d[R(n) - R(n)]/dk =—1 - A, 6dR(n — 1)/dk
By (4)
dR(n - D)/dk = [1 — (80,)" 1dV/dk = - [1 - (50,)™ 1 1/(1 - 8¢,,).
Substituting into (A1), we obtain

d[R(n) — R,(n)]/dk

=— 1+ A3[1 - (80,)" ' 1/(1 - 89,,).

=—(1-8¢, - A,0+A,80,"H/(1-250,)
The expression in parentheses in the numerator of the last expression is written, after substituting
A, =0,,— 0, and collecting terms, as

180, - A,0+A,8%,"

=1- 8¢, + 0,,,0"0,."" - $,,0"0,""

=1-8¢,., +8"0,"'A,, > 0.

Hence, d[R(n) — R 4(n)]/dk < 0. L]

Appendix 2: We evaluate the effect of the size m on the duration of a RJV in the presence of

synergy and spillovers. We assume that they affects the venture’s probability of failure, and write
the extended probability of failure as F(z) = s(z)d(z), where s(z) denotes the effect of synergy or
spillovers. Treating z as continuous and s(z) and ¢(z) as differentiable, and letting primes denote

derivatives, we impose the following conditions: s(1) = 1 and s’(z) < 0 and s”(z) < 0. Synergy
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decreases probability of failure at increasing rates. On the other hand, by assumption 1 ¢’(z) <0
and ¢”(z) > 0. Therefore, F’(z) = s’ + s¢’ < 0 but the sign of F” is indeterminate. Now, using F,
for F(z) and substituting F(.) for ¢(.) in (6) we obtain

H(m; n) =R(n) - R 4(n)

=-k+0F,,-F,)(m-R(n-1))

=~k +8(F,, — F){n—[1 - (Fud)" 'V}
where the final expression comes from substitution for R(n - 1) from (4). Differentiating yields
(A2) dH(m; n)/dm = 8F,, " -F,)(m—R(n- 1)) + (n— )8"V(F,,, - F,)F,"°F,’

+8(F,,, —F.){m—[1 - (Fud)" 11dV/dm.
With F,,,” < 0, the second term on the right is negative. The third term is also negative since a
straightforward calculation yields

dV/dm = — 8Fu’[k + (1 — 8)n]/(1 - 8Fm)> > 0.
The sign of F,,” is indeterminate, which makes the first term on the right of (A2) indeterminate
in sign. If it is non-positive, dH(m; n)/dm < 0, implying that a larger RJV has a shorter duration.
In particular, this occurs in the absence of synergy or spillovers or s(m) = constant. On the other
hand, the presence of strong synergy and spillovers (in the sense that s”(z) < 0 as assumed above)

can make dH(m; n)/dm positive. L]
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Table Al: Description of RJV characteristics

Variables

Description

RJV duration

Product-and-process innovation
Number of RJV firms

Number of RJV partners

RJV monthly cost per partner

Multiple-sector RJV

RJV initiation year dummy

RJV main sector dummy

Ex ante duration, in months, of the Eureka RJV,

Dummy variable taking the value one if the expected
outcome of R&D is product-and-process innovation.

Number of firms in the Eureka RJV

Number of firms, research centers, universities
and national institutions in the Eureka RJV

Total cost of the Eureka RJV divided by the number
of partners and by the number of months of duration,
inclusive of subsidies

Dummy variable taking the value one if participants of
the Eureka RJV come from separate industries as
defined by the two-digit NACE category

Dummy variable taking the value one for the year in which
the Eureka RJV was launched

Dummy variable taking the value one for the main two-
digit NACE category of the Eureka RJV

Source: Eureka database built from the Eureka website (www.eurekanetwork.org).



Table A2: Correlation matrix for the all Eureka RJVs
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Multi-sector Number of partner Monthly cost per
RJV duration  Product-and-process innov. RJV firms partner
RJV duration 1
Product-and-process innov. 0.069 1
Multi-sector RJV 0.018 -0.020 1
Number of partner firms 0.257 0.019 0.037 1
Monthly cost per partner (€Mio) 0.088 0.107 0.022 0.167 1

Note: The matrix displays correlations for the 1,641commercial Eureka RJVs (1985-2004). The

product-and-process innovation variable indicates whether the outcome expected from the RJV

is product combined with process innovation. The multi-sector dummy shows whether the RJV

involves more than one two-digit NACE category. The number of RJV partners and the product

dummy are excluded from the regressions as they are highly correlated with the other variables.
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Figure Al: Fit goodness of the Cox model

Cox-Snell residual

Nelson-Aalen cumulative hazard Cox-Snell residual ‘

Note: Figure A2 displays the Cox-Snell residuals and the Nelson-Aalen cumulative hazard,
confirming the goodness of fit of the Cox proportional hazard model in column 7 of table 3.



