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1 Introduction

Estimating the gains from international trade is one of the oldest and most important issues

in economics. In recent years, owing to the development of easily accessible sectoral, bilateral

trade and output data, as well as input-output tables, on the one hand, and tractable multi-

sector, multi-country general equilibrium trade models on the other hand, there has been

a surge in research quantifying the gains from trade.1 In many of these studies, there is

a presumption that increased sectoral heterogeneity leads to higher gains from trade. This

presumption is natural: in a multi-sector model with Cobb-Douglas preferences across sectors

in which the only source of heterogeneity across sectors is the initial sectoral trade shares, the

multi-sector setting will always yield greater gains from trade, owing to Jensen’s inequality,

than the aggregate version of this model (with the same parameters).2

However, there are many sources of sectoral heterogeneity in a typical multi-sector trade

model. Trade elasticities, value-added shares of gross output, input-output linkages, and final

demand shares, in addition to initial trade shares (driven by fundamental productivity and

trade costs) can all vary across sectors. The gains from trade are a non-linear function of

these parameters and variables. Ultimately, whether sectoral heterogeneity yields greater

gains depends on whether, for example, sectors with high initial trade shares are also sectors

with low value-added shares of gross output and strong input-output linkages. If so, sectoral

heterogeneity will yield greater gains. However, if sectors with high initial trade shares are

sectors with high value-added shares of gross output and low input-output linkages, sectoral

heterogeneity will yield smaller gains. The goal of this paper is to quantitatively evaluate

how sectoral heterogeneity affects the gains from trade in a systematic, comprehensive, and

structurally consistent way.

We employ the Caliendo and Parro (2015) model, which embodies these forms of sec-

toral heterogeneity. Our calibrated model has 20 sectors and 21 countries, and we estimate

and calibrate the parameters to match key features of the sectoral production, trade, ex-

1See Caliendo and Parro (2015), Ossa (2015), Costinot and Rodriguez-Clare (2014), discussed later in
the introduction, for example.

2If there are two sectors, both with a 0.5 expenditure share in the economy, and with domestic expenditure
shares of 0.25 and 0.75, the ratio of the gains (relative to autarky) in the two-sector model relative to an

aggregate model = 20.5 2
3

0.5
> 1. See Levchenko and Zhang (2014) for a formal proof. The Cobb-Douglas

preferences in the upper-tier is essential. See Costinot and Rodriguez-Clare (2014).
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penditure and micro-price data. One of the main contributions of our paper is that we

estimate the elasticity of trade with respect to trade costs for each of 19 traded sectors using

the simulated method of moments (SMM) methodology of Simonovska and Waugh (2014a).

Their methodology builds on an estimation methodology with micro price data introduced

by Eaton and Kortum (2002), by correcting the bias from a small sample of price observa-

tions.3 To our knowledge, this is the first application of the Simonovska and Waugh SMM

estimator to estimate the trade elasticity at the sector level.4 We use the Eurostat surveys

of retail prices, which cover 12 OECD countries and 19 three-digit ISIC traded good sectors

for 1990.5

Our sectoral trade elasticity estimates range from 2.97 to 8.94; the median is 4.38. We

also estimate the sectoral trade elasticities with the original Eaton and Kortum (EK) method

and the minimum, maximum, and median elasticities are 4.26, 35.55, and 10.29. So, our

SMM estimates are clearly lower, as Simonovska and Waugh (2014a) obtained in their paper

with a one-sector framework. In addition, as in Simonovska and Waugh (2014a) (hereafter,

SW), the “bias” is larger the smaller the sample size. For example, ISIC 352, Other chemicals,

has a sample size of 4, while ISIC 311, Food products, has a sample size of 343. Our SMM

estimates are similar across these two industries, 3.75 and 3.57, respectively, but the EK

estimates are 11.93 and 4.28, respectively. These estimates are used in our calibrated model.

We calibrate the other parameters to match their data counterparts and/or to be consistent

with sectoral outputs and trade flows.

With our calibrated model, we compute the gains from trade by comparing the welfare

in our benchmark equilibrium relative to welfare in a counterfactual autarky equilibrium.

Our benchmark calibrated model delivers gains from trade ranging from 0.40 percent in

Japan to 8.33 percent in Ireland. The median gain in going from autarky to the calibrated

equilibrium is 3.96 percent (Mexico). Our gains numbers tend to be considerably smaller

than those in Costinot and Rodriguez-Clare (2014), in which the average gain is about 27

percent. Our welfare gains formula corresponds to the perfect competition, multi-sector,

3Eaton, Kortum, and Kramarz (2011) also employ this type of estimator.
4Simonovska and Waugh (2014b) go further by showing that, given the data on trade flows and micro-

level prices, different models have different implied trade elasticities and welfare gains.
5See Crucini, Telmer, and Zachariadis (2005), for example.
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traded intermediate goods welfare gain formula in Costinot and Rodriguez-Clare (2014);

hence, this difference in gains is primarily because our data are from 1990 and the Costinot

and Rodriguez-Clare (2014) data are from 2008, and we employ our estimated elasticities,

while Costinot and Rodriguez-Clare (2014) use the elasticities from Caliendo and Parro

(2015).

We then conduct two sets of counterfactual exercises to assess the role of sectoral

heterogeneity. We focus on five sources of heterogeneity in the gains from trade equation:

sectoral trade elasticities, value-added gross output ratios, final demand shares, input-output

linkages, and initial trade shares. In the first set of exercises, which we think of as “inspect

the mechanism” exercises, we eliminate one or two sources of sectoral heterogeneity at a

time. For each source of sectoral heterogeneity, we substitute a parameter (or variable)

that is common across all sectors. For example, we replace the estimated sectoral trade

elasticities with a single elasticity common to all sectors. We compute the gains from trade

and compare these gains to those from the benchmark model. When we eliminate one source

of heterogeneity at a time, we find that typically the gains from trade are close to that of the

benchmark model. That is, when we replace our estimated sectoral trade elasticities with

the median estimate (4.38), the sectoral value-added shares with the average value-added

share, the sectoral final demand share with the average final demand share, the sectoral

intermediate use requirements with an average intermediate use requirements, or the initial

sectoral trade shares with a common average initial share share, the median (across countries)

gains from trade are about 15 percent (equivalent to about one-half percentage point) higher

or lower than the benchmark gains. For the value-added share case, the gains from trade are

higher than in the benchmark model, and for the other four cases, the gains are lower than

in the benchmark model. Our results for removing two sources of heterogeneity are similar.

Notably, removing sectoral heterogeneity in the value-added share along with heterogeneity

in one of the final demand share, the initial import share, or the trade elasticity, now leads

to lower gains from trade than in the benchmark model, although the numbers continue

to be relatively small. Overall, we find that most sources of sectoral heterogeneity lead to

relatively small additional gains from trade.

In the second set of exercises, we compare the welfare gains in our benchmark model
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to our aggregate model. The aggregate model has just one tradable sector; all heterogeneity

across tradable sectors is eliminated. We also estimate the aggregate trade elasticity with

the SW methodology; we obtain a value of 2.37. Owing in part to this low estimate, we

find that the gains from trade in the aggregate model are about one-third larger than in

the benchmark model. That is, when we compare our benchmark model with its estimated

sectoral trade elasticities, and with sectoral heterogeneity on several other dimensions, to

our aggregate model with its estimated aggregate trade elasticity and no sectoral hetero-

geneity across tradable sectors, it is the aggregate model that has greater gains from trade.

Further investigation shows that the low estimated aggregate elasticity plays a key role. It is

important to reiterate that both sets of elasticities are estimated in a model-consistent way.

To better understand the two sets of exercises, we construct 10-sector and 4-sector

version of our models; we estimate the elasticities, and then we calculate the gains from

trade. This exercise allows us to compare the estimated elasticities and the gains from

trade as the number of sectors decrease in a sequence of models from the benchmark model

to the aggregate model. In each successively more aggregate model, the average estimated

elasticity is lower. We also find that the gains from trade broadly – albeit, not monotonically

– increase as the models become more aggregated. These results put our above two exercises

in context. The estimated elasticities matter the most for the gains from trade.

To further understand all of our results, we conduct a Monte Carlo-type exercise in

which we simulate prices and trade shares from our calibrated benchmark model. We then

aggregate across sectors, and ask: “suppose this data were generated from an aggregate

model. What would be the implied aggregate trade elasticity?”. We find that the estimated

aggregate elasticity from this exercise is about 2.65, which is only slightly larger than our

actual estimated aggregate elasticity. In other words, our benchmark model generates data

that would be consistent with a low aggregate elasticity in an aggregate model.

Overall, we conclude from our “inspect the mechanism” counterfactual, our benchmark

vs. aggregate model counterfactuals, our additional exercises involving a smaller number

of sectors, and our Monte Carlo exercise that increased sectoral heterogeneity does not

necessarily imply larger gains from trade. This should not be a surprise, because it is just as

the theory implies. The formula for the gains from trade shows clearly that whether sectoral
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heterogeneity per se leads to greater gains depends on the interactions between the sectoral

trade elasticities, initial trade shares, final demand shares, value-added shares of gross output,

and the input-output linkages. Our results suggest that, overall, the interactions “cancel”

to a large degree. A second conclusion is that model-consistent elasticity estimates should

be used no matter the level of aggregation.

Our paper is most closely related to Costinot and Rodriguez-Clare (2014), and Ossa

(2015). Costinot and Rodriguez-Clare (2014) and Ossa (2015) compare the gains from

multi-sector models to the gains from one-sector models; these comparisons are similar to

our second set of counterfactual exercises. However, crucially, they do not estimate their

aggregate elasticity, and essentially use an average sectoral elasticity as their aggregate elas-

ticity. These elasticities are larger than the median of their sectoral elasticities. We argue

that there are good reasons to expect the “true” aggregate elasticity to be below the me-

dian sectoral elasticity – this is what we have found, and other research, notably Broda and

Weinstein (2006), has found a similar pattern.

Caliendo and Parro (2015) also evaluate the gains from trade in multi-sector versus one-

sector models in the context of the gains from NAFTA. They find that the multi-sector model

delivers larger gains. A key reason may be that their estimated aggregate trade elasticity, 4.5,

is close to their median estimated sectoral elasticity, while our estimated aggregate elasticity

is about one-half our median estimated sectoral elasticity. Levchenko and Zhang (2014) is

another related paper. The paper assesses the ability of simple gains from trade formulas to

capture the gains from trade in a calibrated multi-country, multi-sector model. They find

that the multi-sector formulas that allow for sectoral variation in trade shares, expenditure

shares, and intermediate goods come closest to matching the calibrated model’s gains from

trade. They also find that the multi-sector gains from trade formulas broadly imply larger

gains from trade than their one-sector formulas. However, unlike in our paper, their analysis

is conducted with a common θ for all sectors.

Finally, our paper is related to several papers that address aggregation in the estima-

tion of trade elasticities. Broda and Weinstein (2006) estimate their elasticities at several

levels of aggregation, and obtain the same pattern as us – lower elasticities at higher levels

of aggregation. Imbs and Mejean (2015) begin from a framework in which the aggregate

5



elasticity equals the mean sectoral elasticity by assumption. Then, under certain conditions,

they show that there can be a downward bias in estimating the aggregate elasticity. However,

in our framework, the starting point of Imbs and Mejean (2015) does not hold. Feenstra,

Luck, Obstfeld, and Russ (2018) argue that instead of assuming that all home and foreign

varieties have the same elasticity of substitution, a two-level aggregation of individual va-

rieties within each country (micro elasticity), and then aggregation of the country bundles

(macro elasticity), is preferred. They find that the upper level elasticity, the macro elasticity,

is smaller than their micro elasticity, and both sets of estimates are on the order 3 or less.6

The rest of the paper is organized as follows. Section 2 lays out our model, and the

following section provides our calibration and estimation methodology. Section 4 presents

our trade elasticity estimates, and section 5 presents our benchmark welfare gains, and our

counterfactuals. Section 6 concludes.

2 Model

Our model draws from Alvarez and Lucas (2007) and Caliendo and Parro (2015), (hereafter,

CP) both of which extend Eaton and Kortum (2002), (hereafter, EK). Hence, we describe it

briefly below, and where possible, we use the notation of CP and EK. There are N countries

and S sectors, with S − 1 sectors producing tradable goods, and one sector producing a

non-traded good.

2.1 Production

In each tradable goods sector s ∈ S of country n ∈ N , there is a continuum of goods

xsn ∈ [0, 1]. Each good is produced by combining labor and tradable and non-tradable

intermediate inputs with a roundabout Cobb-Douglas technology:

qsn (xs) = zsn (xs) [lsn (xs)]γ
s
n

[
S∏
r=1

mr,s
n (xs)ξ

r,s
n

]1−γsn

(2.1)

6Another related paper is Yilmazkuday (2019). This paper builds off of our paper, and addresses over-
coming the paucity of data at the sectoral level to estimate elasticities. Its focus is on income elasticities
with non-homothetic preferences, and on the heterogeneity of these elasticities across countries, not sectors.
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where zsn (xs) is the productivity or efficiency term and is drawn from a Fréchet distribution

with country-sector specific productivity parameter λsn and sector-specific variation param-

eter θs.7 lsn (xs) is the labor used to produce good xs in country n. γsn is the value-added

share of output in country n and sector s. mr,s
n is the amount of sector r composite good

used as an intermediate input for producing xs in country n. ξr,sn is the share of inputs from

sector r used in the production of good xs in country n; it captures input-output linkages

between sectors. Note that
∑S

r=1 ξ
r,s
n = 1 for each sector s.

Given the above production function, and under perfect competition, the cost of a

bundle of labor and intermediate inputs in each country-sector n, s is given by:

csn = Bs
nV

s
n = Bs

n [wn]γ
s
n

[
S∏
r=1

(P r
n)ξ

r,s
n

]1−γsn

, (2.2)

where wn is the wage rate in country n, P r
n is the price of country n sector r composite

intermediate, and Bs
n denotes a country-and-sector specific constant.8

For each country-sector n, s, individual goods are combined via a constant elasticity of

substitution (CES) aggregator to make a sectoral composite good Qs
n:

Qs
n =

[∫ 1

0

qsn (xs)
σ−1
σ dxs

] σ
σ−1

(2.3)

where qsn (xs) is the amount of good xs in country n used to produce the composite good, and

σ is the elasticity of substitution between the individual goods in a sector. The composite

good is used for consumption, and as an intermediate in the production of individual goods.

2.2 International Trade and Sectoral Prices

We make the standard iceberg assumption – in order for country n to receive one unit of

a sector s good, country i must ship dsni ≥ 1 units. Each country-sector will purchase the

cheapest individual good, adjusted for trade costs. Owing to the Fréchet distribution of

productivities, the sectoral price index is given by:

7The z’s are assumed to be independent across goods, sectors and countries.

8Bsn = (γsn)
−γsn (1− γsn)

−(1−γsn)
[∏S

r=1 (ξr,sn )
−ξr,s

](1−γsn)
7



P s
n = As

(
N∑
i=1

(csid
s
ni)
−θs λsi

)−1
θs

(2.4)

where As is a sector-specific constant.9

2.3 Consumption

In each country there is a representative household that derives utility from a final consump-

tion good, Cn.

Un = Cn .

The final consumption good is a Cobb-Douglas aggregator of the sectoral composite goods

used for consumption Cs
n.

Cn =
S∏
s=1

(Cs
n)α

s
n (2.5)

where
∑S

s=1 α
s
n = 1 . The price of the final good, therefore, is given by

Pn =
S∏
s=1

(αsn)−α
s
n (P s

n)α
s
n (2.6)

2.4 Market Clearing

We normalize labor in each country to 1. Then, the market clearing conditions for labor and

the sectoral composite goods in country n are given by:

S∑
s=1

∫ 1

0

lsn (xs) dxs︸ ︷︷ ︸
lsn

≤ 1 , n = 1, . . . , N ,

S∑
r=1

∫ 1

0

ms,r
n (xs) dxs︸ ︷︷ ︸
ms,rn

+Cs
n ≤ Qs

n , n = 1, . . . , N r, s = 1, . . . , S .

9As =

(∞∫
0

uθ
s(1−σ) exp (−u) du

) 1
1−σ

is a Gamma function.
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2.5 Sectoral Expenditures, Trade Flows, Trade Balance, Labor

Market Equilibrium, and Equilibrium in Changes

We define total per capita expenditure by country n, sector s as Xs
n = P s

nQ
s
n. EK and CP

show that the share of expenditure by country n on sector s goods from country i (Ds
ni) is

also the probability that country n will purchase a particular good in sector s from country

i, (πsni) and is given by:

Ds
ni =

Xs
ni

Xs
n

= πsni =
λsi [csid

s
ni]
−θs∑N

m=1 λ
s
m [csmd

s
nm]−θ

s (2.7)

Using (2.4), we can rewrite this expression as:

Ds
ni = (As)−θ

s

(
csid

s
ni

P s
n

)−θs
λsi (2.8)

It can be shown that total expenditure on the sector s composite good in country n is

given by:

LnX
s
n = αsnwnLn +

S∑
r=1

(1− γrn) ξs,rn

N∑
i=1

LiX
r
iD

r
in . (2.9)

The equilibrium wage is determined by the balanced trade condition (2.10). The labor

allocation in each sector (2.11) is implied by the firm’s first order conditions:

S∑
s=1

LnX
s
n =

S∑
s=1

N∑
i=1

LiX
s
iD

s
in (2.10)

Lnwnl
s
n = γsn

N∑
i=1

LiX
s
iD

s
in , s = 1, ..., S (2.11)

The competitive equilibrium is the sectoral composite good price indices {P s
n}Ss=1, per

capita expenditures on each sector’s goods ({Xs
n}Ss=1), wages (wn), and labor allocations

({lsn}Ss=1), ∀ n = 1, ..., N that provide a solution to the system of equations - (2.4),(2.8),

(2.9), (2.10), and (2.11).

As in CP, we solve the model employing the “changes” methodology developed by

Dekle, Eaton, and Kortum (2008). Specifically, we solve for the changes in the endogenous
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variables from changing trade costs d to d′, where d and d′ represent the 3-dimensional matrix

of country-by-country-by-sector trade costs. These changes can be characterized in “hat”

from, in which, for example, ŵ = w′

w
. Please see Appendix A for the equations of equilibrium

expressed in “hat” form.

2.6 Sources of Gains from Trade

What are the sources of gains from trade in our model with sectoral linkages? In our model,

welfare is captured by the real wage; hence, the gains from trade is the change in the real

wage in going from autarky to the current period. Using (2.6) yields the following expression

for the real wage:

Wn =
1

α̃

S∏
s=1

(
wn
P s
n

)αsn
, (2.12)

where α̃ =
∏S

s=1 (αsn)−α
s
n . Thus, real income is a geometric average of the real wage expressed

relative to the price of sector s composite, with the weight being each sector’s weight in the

final consumption good. Combining (2.8) with the expression for unit cost of the input

bundle (csn) yields the following expression for wn/P
s
n for the tradable goods sectors:

wn
P s
n

=

(
1

AsBs
n

) 1
γsn

(
Ds
nn

λsn

) −1
θsγsn

S∏
r=1

(
P r
n

P s
n

)−ξr,sn (1−γsn)
γsn

, s = 1, . . . , S

Note that the non-traded sector enters like the other sectors, except Ds
nn = 1. Substi-

tuting the above into the expression for the real wage gives:

Wn =
wn
Pn

=
S∏
s=1

(αsn)α
s
n

( 1

AsBs
n

) 1
γsn

(
Ds
nn

λsn

) −1
θsγsn

S∏
r=1

(
P r
n

P s
n

)−ξr,sn (1−γsn)
γsn

αsn (2.13)

Now, define Ψr,s
n = ξr,sn (1 − γsn) as the (r, s) element of the (S × S) matrix Ψn. Sub-

stituting (2.2) into (2.4) allows us to solve for sectoral prices as a function of wn, Dr
nn, and

parameters.10 Substituting this solution for prices into (2.13), we get:

10In the absence of solving out for prices, our gains from trade equation is given by ln Ŵn =∑S
s=1

[
− αsn
θsγsn

ln D̂s
nn −

αsn(1−γ
s
n)

γsn

∑S
r=1 ξ

r,s
n ln

(
P̂ rn
P̂ sn

)]
10



Wn =
S∏
s=1

(αsn)−α
s
n

[
S∏
r=1

(ArBr
n)−Ψ̃r,sn (λrn)

1
θr

Ψ̃r,sn (Dr
nn)−

1
θr

Ψ̃r,sn

]αsn
(2.14)

where Ψ̃r,s
n is the (r, s) element of the matrix (In −Ψn)−1. The matrix is the well-known

Leontieff inverse, and we will refer to an individual element of it as the “input-output link-

age”.

Then, the log change in the real wage is given by:

ln Ŵn = −
S∑
s=1

αsn

S∑
r=1

1

θr
Ψ̃r,s
n ln D̂r

nn (2.15)

Our welfare gain formula is essentially the same as that of CP and Ossa (2015), and it

corresponds to equation 29 in Costinot and Rodriguez-Clare (2014) for the perfect compe-

tition case (δ = 0). There are four sources of gains from trade: the change in the domestic

shares, Dr
nn; the input-output linkages, Ψ̃r,s

n ; the trade elasticies, θr, and the final demand

shares, αsn. In response to a decline in trade barriers, the gains are larger, the more Ds
nn

declines, and, for a given decline in Ds
nn, the larger is the input-output linkage, Ψ̃r,s

n , the

smaller is the trade elasticity, θr, and the larger is the final demand share, αsn. It is easy to

see that the interaction of these sector-specific parameters and variables – sectoral hetero-

geneity – can matter. For example, the gains are larger to the extent that sectors with low

trade elasticities are also sectors with high final demand shares and with large decreases in

Ds
nn.

The input-output linkages terms, Ψ̃r,s
n , embody value-added shares and cross-sector

linkages, which, by themselves can play a key role in the welfare gains from trade. To un-

derstand their role, consider three cases. In the first case, suppose there are no intermediate

goods; there is only value-added, i.e., γsn = 1. In this case, Ψr,s
n = 0 ∀ r, s, and Ψ̃r,s

n = 1

if r = s and 0 otherwise. Hence, (2.15) reduces to −
∑S

s=1
αsn
θs

ln D̂s
nn. In a value-added

model, sectoral heterogeneity matters, but to a more limited extent than in (2.15). In the

second case, there are intermediate goods and within sector input-output linkages, but no

cross-sector linkages. In this case, Ψr,s
n = 1− γsn, and Ψ̃r,s

n = 1
1−γsn

, if r = s and 0 otherwise.
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The gains from trade are then given by:

−
S∑
s=1

αsn
θs

(
1

1− γsn

)
ln D̂s

nn. (2.16)

It ie easy to see that introducing intermediate goods in this way always leads to higher

welfare gains than in the value-added model case. Also, all else equal, the smaller the value-

added share, the higher the welfare gains. Comparing (2.16) to (2.15), we can see that

adding cross-sector linkages adds numerous (S2 − S) channels to the welfare gains. Some

of these channels include non-traded goods. These goods influence the gains from trade via

the cross-sector terms in Ψ̃r,s
n that link ln D̂s

nn in the tradable sectors to the welfare gains.

Finally, it is important to indicate that despite, and because of, the richness of (2.15), it

cannot be immediately inferred from that more sectoral heterogeneity automatically implies

greater gains from trade. This is true for CP, Ossa (2015), and Costinot and Rodriguez-Clare

(2014), and other papers that have similar welfare formulas. Whether there are greater gains

from trade is a quantitative question that depends on the data and parameters. This is what

we turn to now.

3 Calibration and Estimation Methodology

We now describe how we calibrate the model. We calibrate two versions of the model, which

we call the “benchmark” model and the “aggregate” model. The aggregate model has just

two sectors, a single tradable sector in which all the tradable sectors from the benchmark

model are aggregated into one, and the non-traded sector.

The most important parameters to be calibrated are the sectoral θs’s, which equal the

trade elasticities with respect to trade costs, for each of the tradable sectors. We estimate the

θs’s by employing the simulated method of moments methodology introduced by Simonovska

and Waugh (2014a) (hereafter, SW). The methodology builds on the method of moments

methodology with micro price-level data introduced by EK. The EK estimator exploited

a no-arbitrage condition to estimate trade costs. Essentially, with a sample of prices of

individual goods comparable across countries, the trade cost between two countries must
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not be less than any of the price differences for any good across that pair of countries. In

other words, if the sample is large enough, the trade cost should equal the maximum price

difference. However, in small samples, SW show that estimating trade costs in this way

leads to upwardly biased estimates of the trade elasticity. SW develop a simulated method

of moments (SMM) estimator to correct for that bias. To our knowledge, we are the first to

apply this methodology at the sectoral level. The estimation procedure employs micro-level

price data, categorized into sectors, and sectoral trade flow data, with the latter captured by

a ‘gravity’ equation linking sectoral trade shares to source and destination fixed effects and

to trade costs. In this section, we also describe our data sources, as well as the calibration

of the other parameters.

3.1 Sector-Level Trade Elasticity

As stated above, we use the SMM estimation methodology developed by SW to estimate the

trade elasticity for each tradable sector s – θs. The two core estimating equations, as well

as a summary of the methodology, are provided here; a detailed description is provided in

Appendix C.

For two countries n and i and for sector s, we use (2.8) to obtain:

Ds
ni

Ds
ii

=
(As)−θ

s
(
csi d

s
ni

P sn

)−θs
λsi

(As)−θ
s
(
csi d

s
ii

P si

)−θs
λsi

=

(
P s
i d

s
ni

P s
n

)−θs

In logs, we have:

log

(
Ds
ni

Ds
ii

)
= −θs log

(
P s
i d

s
ni

P s
n

)
(3.1)

Note that if we had only one sector, we would have θs = θEK where θEK represents θ in EK.

Similar to EK and SW, we construct the sectoral prices, inclusive of trade costs, using micro

price data:

log

(
P s
i d

s
ni

P s
n

)
= max

x
{rni (xs)} −

Hs∑
x=1

[rni (x
s)]

Hs
(3.2)

where rni (x
s) = log psn (xs) − log psi (xs), maxx means the highest value across goods, and
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Hs is the number of goods in sector s of which prices are observed in the data. The above

“trade elasticity” equation is one of the two core estimating equations.

We combine the above estimation with estimation of a structural gravity equation

following EK and Waugh (2010). Using, (2.8) we get:

Ds
ni

Ds
nn

=

(
csid

s
ni

csn

)−θs
λsi
λsn

Let Ωs
n = (csn)−θ

s

λsn and T sn = ln (Ωs
n). Then

ln

(
Ds
ni

Ds
nn

)
= T si − T sn − θs ln (dsni) (3.3)

As in Waugh (2010), we specify trade costs as follows:

ln(dsni) = distI︸︷︷︸
distance

+ brdr︸︷︷︸
border

+ lang︸︷︷︸
language

+ tblkG︸ ︷︷ ︸
trade block

+ srcsi︸︷︷︸
source effect

+ εsni , (3.4)

where distI (I = 1, . . . , 6) is the effect of distance between n and i lying in the Ith interval,

brdr is the effect of n and i sharing a border, lang is the effect of n and i sharing a language,

tblkG (G = 1, 2) is the effect of n and i belonging to a free trade area G, and srcsi (i =

1, . . . , N) is a source effect. The error term εsni captures trade barriers due to all other

factors, and is assumed to be orthogonal to the regressors. The errors are assumed to be

normally distributed with mean zero and variance, σε. The six distance intervals (in miles)

are: [0, 375); [375, 750); [750, 1500); [1500, 3000); [3000, 6000) and [6000,maximum]. The

two free trade areas are the European Union (EU) and the North-American Free Trade

Agreement (NAFTA). T si is captured as the coefficient on source-country dummies for each

sector s.

(3.1), (3.2), (3.3), and (3.4) are the core estimating equations in the SMM procedure.

The procedure is now described:

1. Estimate θs using trade and price data in (3.1) and (3.2) by the method of moments

(MM) estimator as in EK. Call this θsEK .

2. Estimate (3.3) and (3.4). Because the data include zero-trade observations, we use the
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Poisson pseudo maximum likelihood (PPML) estimation Silva and Tenreyro (2006).

The gravity equation estimates provide measures of sector-source-destination trade

costs conditional on a value for θs.

3. For a given θs, say, θsG, use source dummies in the gravity equation to estimate source

marginal costs, and the coefficients on the trade cost measures to estimate bilateral

trade costs.

4. Use the marginal cost and trade cost estimates to compute, for each good, the set of all

possible destination prices. Select the minimum price for each destination. Repeat this

exercise 50, 000 times, corresponding to 50, 000 goods in each sector.11 These prices

are the simulated prices.

5. Using all of the simulated prices, calculate the model-implied trade shares, and call

them the simulated trade shares.

6. Draw goods prices – the actual number equals the number of goods in our sample

(in the sector) – and trade shares from the pool of simulated prices and trade shares.

Estimate θs with the MM estimator. Call the estimate θsS. Repeat this exercise 1, 000

times.

7. Find the θsG that minimizes the weighted distance between θsEK and the mean θsS. The

selected θsG is the SMM estimate of θs. Call this θsSMM .

Following Eaton, Kortum, and Kramarz (2011) and SW, we calculate standard errors

using a bootstrap technique, taking into account sampling error and simulation error, as

well as the fact that the right-hand side of (3.1) is a “generated regressor”. The latter, in

particular, will deliver relatively high standard errors for those sectors with a small sample

of goods. The procedure is discussed in detail at the end of Appendix C.

11In SW, the total number of goods is 100,000. In our aggregate model, the number of goods is 19 x
50, 000 = 950, 000.
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3.2 Data for Estimating Sectoral Trade Elasticities and Trade

Costs

The data on prices of goods, needed for the estimation of sectoral θ’s, come from Eurostat

surveys of retail prices in the capital cities of EU countries for the year 1990. The data set

has been compiled by Crucini, Telmer, and Zachariadis (2005) and used by Giri (2012) and

Inanc and Zachariadis (2012), for example. We use price data for 12 countries included in the

surveys - Austria, Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Netherlands,

Portugal, Spain and United Kingdom. The goods maintain a high degree of comparability

across locations; typical examples of item descriptions are “500 grams of long-grained rice in

carton”, or “racing bicycle selected brand”. The level of detail is for some cases at the level

of the same brand sampled across locations. This enables exact comparisons across space at

a given point in time. The retail price of a good in a given country is the average of surveyed

prices across different sales points within the capital city of that country. Furthermore,

the effect of different value added tax (VAT) rates across countries has been removed from

the retail prices. The price data cover 1896 goods for the year 1990; we use 1410 of these

goods prices. Each good is then assigned to one of our 19 ISIC sectors. We use the same

assignment system as in Crucini, Telmer, and Zachariadis (2005).12 For example, long-

grained rice is assigned to sector 311 (Food products), and racing bicycle to sector 384

(Transport equipment). The sample size of prices in each sector (Hs) is given in Table 2.

In our framework, as is standard in EK-type multi-country models, we assume that

within country trade and distribution costs are zero. To square this assumption with the

reality of distribution costs, mark-ups, and other costs that make retail prices different from

at-the-importing-dock prices, we assume, as do SW, that such costs have the same propor-

tional effect on at-the-importing-dock prices across all goods.13 Under this assumption, the

solution of the model is identical to the one in which within country costs are zero.

Data on value-added, gross output and bilateral trade by sectors for 1990 come from the

Trade, Production and Protection (TPP) database of the World Bank. They provide a broad

12The data can be downloaded from http://www.aeaweb.org/articles.php?doi=10.1257/0002828054201332.
See column V in the spreadsheets containing the price data.

13An alternative approach is to explicitly model such costs, as in Giri (2012)
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set of data covering measures of trade, production and protection for 21 OECD countries and

28 manufacturing sectors corresponding to the 3-digit level International Standard Industrial

Classification (ISIC), Revision 2.14 Out of the 28 manufacturing sectors, we use data for 21

sectors, because, for the other sectors, there are many missing observations on trade flows.

For the same reason, we also combine sectors 313 (Beverages) and 314 (Tobacco) into one

sector, and sectors 341 (Paper and paper products) and 342 (Printing and Publishing) into

another sector. The description of the 19 sectors is provided in the appendix in Table 9.15

The data on trade barriers - distance, border and language - come from CEPII.16

To compute the trade shares for a sector s – share of country j in country i’s total

expenditure on sector s goods – total exports of a country are subtracted from its gross

output. This gives each country’s home purchases for a sector (Xs
ii). Adding home purchases

and total imports of a country gives the country’s total expenditure on sector s goods (Xs
i ).

Normalizing home purchases and imports of an importing country from its trading partners

by the importer’s total expenditure creates the expenditure shares - Ds
ij - that are used in

the gravity equation estimation.

3.3 Calibration of Other Parameters

In this section, we show how the other parameters of the model are calibrated. The value-

added share of gross output in sector s and country n, γsn, is calculated for 1990 using data

on value-added and gross output from the World Bank TPP database. We do this for all

the tradable sectors. For the non-tradable sector, we use data for 1990 from the OECD

STAN Structural Analysis database (STAN Industry, ISIC Rev. 2 Vol 1998 release 01). Our

non-tradable sector consists of all sectors other than the manufacturing sector.

Two of our parameters, ξr,sn – the share of sector r in the expenditure of sector s on

intermediate inputs in country n – and αsn – the sector s share of final domestic expenditure

14The countries include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, United
Kingdom, and United States.

15Sectors dropped due to missing data on trade volumes are Industrial chemicals, Petroleum refineries,
Miscellaneous petroleum and coal products, Non-ferrous metals, Machinery, except electrical, Professional
and scientific equipment, and Other manufactured products.

16http://www.cepii.fr
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in country n, are calculated using the national input-output tables (NIOT) from the World

Input-Output Database (WIOD). Specifically, we use the first year of the 2013 release, 1995,

as a proxy for the tables in 1990. The sectors in these tables are concorded to match them

with the ISIC categories for the price and other data. The concordance is described in

Appendix B.

σ is the elasticity of substitution between goods of a sector. EK shows that this

parameter does not affect the results of the counterfactual exercises in our model. We

choose σ = 2 for all sectors.17

We set the trade elasticity (θ) for the non-traded sector to 4. As a reminder, in our

aggregate model, the 19 traded goods sectors are combined into a single traded goods sector,

and we continue to include the non-traded sector.18 The parameters γsn, αsn, and ξr,sn for the

single traded sector are constructed as weighted averages across the tradable sectors.

Table 1 shows the key parameters of our model averaged across countries.

Table 1: Average Across Countries of γsn and αsn

ISIC Code γsn αsn

311 0.2603 0.0318

313,314 0.4911 0.0318

321 0.3878 0.0095

322 0.4269 0.0095

323 0.3296 0.0021

324 0.3925 0.0021

331 0.3565 0.0010

332 0.4150 0.0010

341,342 0.4285 0.0122

352 0.4421 0.0176

355 0.4380 0.0022

356 0.4085 0.0022

361 0.5829 0.0010

362 0.5003 0.0010

369 0.4512 0.0010

371 0.3391 0.0046

381 0.4180 0.0046

383 0.4176 0.0280

384 0.3469 0.0344

Non-tradable 0.6049 0.8027

Tradable (Aggregate Model) 0.3670 0.1973

17This is the highest value that ensures that the Gamma function determining As is well defined for all
sectors.

18Hence, there is still an input-output structure, now with a 2 x 2 matrix.
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4 Estimated Trade Elasticities

We present our estimated sectoral trade elasticities and our estimated aggregate trade elas-

ticity, along with comparisons to the elasticities estimated by Ossa (2015), CP, and Broda

and Weinstein (2006).

4.1 Estimated Sectoral Trade Elasticities

Table 2 presents the results of the estimation of trade elasticities - θs. The column labeled

“SMM-PPML” shows the estimates from our application of the SW SMM methodology with

PPML estimation of the gravity equation.19 Bootstrapped standard errors for each estimate

are in parentheses. For comparison, we also estimate the sectoral elasticities with the original

Eaton and Kortum (EK) methodology. These estimates are in the column labeled “EK”.

The last column shows the number of goods in each sector (after mapping the individual

goods into the 3-digit ISIC sector categories).

Our sectoral trade elasticity estimates range from 2.97 (ISIC 341 and 342, Paper and

products; printing and publishing) to 8.94 (ISIC 371, Iron and steel); and the median is 4.38

(ISIC 355, Rubber products). Our import-weighted average elasticity is 4.27, which is close

to the median. The trade elasticity estimates with the EK methodology range from 4.26

(ISIC 383, Machinery, electric) to 35.55 (ISIC 372, Iron and steel) with a median of 10.29

(ISIC 324, Footwear, except rubber or plastic). In each sector, our SMM estimate of the

trade elasticity is smaller than the estimate obtained by the EK methodology.

Hence, our SMM estimates mirror, at the sector level, what SW proved and demon-

strated at the aggregate level. Moreover, we find, as expected based on SW, that the gap

between our estimate and the EK estimate is smaller, the larger the number of goods per

sector. In other words, the “bias” is smaller, the larger the sample size. For example, com-

pare sectors 381 and 382. The former has just 11 observations, while the latter has 416. In

the former, the SMM estimate is 5.07 and the EK estimate is 18.5, while in the latter, the

SMM estimate is 3.27 and the EK estimate is 4.26.

19We also estimated the elasticity by OLS. The estimates are very similar to the PPML estimates. This
suggests that the issue of zeros in trade-flow data is not significant with our data.
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Ossa (2015) estimates sectoral trade elasticities at the three-digit SITC level for 251

industries using methods pioneered by Feenstra (1994), and implemented recently by Broda

and Weinstein (2006). The range of his estimates are [0.54, 24.05].20 The mean estimate

is 2.63; crucially, the median estimate is 1.91, which means, of course, that more than half

of the estimated elasticities are less than 2. Overall Ossa’s sectoral elasticity estimates are

considerably lower than our sectoral elasticity estimates. Ossa’s level of sectoral aggregation

is also considerably lower than ours. Does this play a role? As we discuss later, Broda and

Weinstein (2006) estimated sectoral trade elasticities at several levels of aggregation – they

tended to find lower elasticities at higher levels of aggregation. This suggests that had Ossa

estimated the elasticities at a level of aggregation similar to ours, the estimates might have

been even lower than his existing estimates.

Caliendo and Parro (2015) also estimate structurally consistent sectoral trade elastici-

ties. They use a triple-difference approach with sector-level data – sector-level tariff rates, in

particular – to estimate their trade elasticities. Hence, their approach is quite different from

ours. Their sectors are at roughly the same level of aggregation as ours, facilitating direct

comparisons. Our three largest sectors in terms of final demand shares are Food, beverages

and tobacco; Electric machinery; and Transport equipment. Our estimates for Food, and

for Beverages and tobacco are both 3.57. CP’s estimate for the same sector is similar, 2.62

(all estimates listed here are with CP’s 99% sample). Our estimate for Electric machinery

is 3.27, and CP’s estimates for Electric machinery and Communication equipment are 12.91

and 3.95, respectively , which are higher than ours. On the other hand, our estimate for

Transport equipment is 4.47. CP’s estimates for Auto and Other Transport are 1.84 and

0.39, respectively, which are lower than ours. As suggested by these examples, our median

elasticity, 4.38, is close to CP’s median elasticity, 3.965. However, our estimates exhibit a

smaller range, [2.97, 8.94] than CP’s estimates for the manufacturing sectors, [0.39, 64.85].

Note that their lowest elasticity, as well as the lowest estimated elasticity in Ossa (2015),

0.54, are considerably smaller than our lowest estimated elasticity. This will be important

for interpreting our welfare results vis-a-vis these other papers, which we discuss more fully

below.

20Ossa (2015) reports the estimates of the substitution elasticity, σs; the trade elasticity is σs − 1.
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To summarize, overall, our elasticity estimates have a higher median and a smaller

range compared to those of Ossa (2015) and Caliendo and Parro (2015). In particular, our

minimum sectoral elasticity is considerably higher than theirs.21

Table 2: Estimates of θs (standard errors)

ISIC Code Sector Description SMM-PPML EK Sample Size

of Prices

311 Food products 3.57 (0.28) 4.28 343

313,314 Beverages and Tobacco 3.57 (0.47) 5.36 93

321 Textiles 3.27 (0.59) 5.21 36

322 Wearing apparel, except footwear 4.41 (0.26) 5.17 143

323 Leather products 5.28 (0.48) 8.14 20

324 Footwear, except rubber or plast 4.77 (0.97) 10.29 20

331 Wood products, except furniture 4.17 (1.87) 15.45 8

332 Furniture, except metal 4.47 (0.88) 15.37 5

341,342 Paper and products and printing and publishing 2.97 (0.42) 6.57 14

352 Other chemicals 3.75 (0.51) 11.93 4

355 Rubber products 4.38 (0.58) 8.02 14

356 Plastic products 3.87 (2.24) 16.00 8

361 Pottery, china, earthenware 5.94 (2.81) 19.79 14

362 Glass and products 5.61 (1.60) 19.08 6

369 Other non-metallic mineral products 3.87 (1.34) 14.10 7

371 Iron and steel 8.94 (5.33) 35.55 16

381 Fabricated metal products 5.07 (2.46) 18.50 11

383 Machinery, electric 3.27 (0.52) 4.26 416

384 Transport equipment 4.47 (0.78) 6.50 232

Minimum 2.97 4.26 4

Maximum 8.94 35.55 416

Average 4.51 12.08 74.21

Median 4.38 10.29 14

21It is worth pointing that using the EK or SW methodologies, it would be difficult to obtain an elasticity
estimate on the order of 1.5, for example. It is easy to see this for the EK methodology. From (3.1) and
(3.2), we can see that the estimate for θs is essentially the mean across country-pairs of the ratio of the log
bilateral trade share and the maximum log bilateral price difference minus the average log bilateral price
difference. It turns out that the average log bilateral price difference is very close to 0 in the data for most
country-pair-sector combinations. Hence, given the log bilateral trade share in the data, the maximum log
bilateral price difference is what determines the estimate for θs. For example, in the Food products sector, for
which the estimated elasticity is 4.28, the maximum log price difference translates into a factor 3.3 difference
in prices. Consider the following question: given the log bilateral trade share in the Food products sector,
what would the maximum price difference need to be if the EK estimate of θs was 1.5? The maximum log
price difference would be 3.4, which translate to a factor 30.4 difference in prices. This seems unlikely for
our sample of countries.
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4.2 Estimated Aggregate Trade Elasticity

As mentioned above, in our aggregate model, we combine the 19 traded goods sectors into

a single aggregate traded sector (and still include the non-traded sector). In the CES ag-

gregator for this sector, all goods are treated symmetrically; hence, in our estimation, we

treat all goods symmetrically, as well. We obtain an estimate of θ = 2.37. Two things stand

out about this estimate. First, the estimate seems low relative to other aggregate estimates.

Second, the estimate is lower than the minimum of our sectoral elasticity estimates. In

the context of other aggregate elasticity estimates, it turns out there are estimates that are

similar. For example, while EK’s preferred estimate is 8.28, one of their estimates is 3.6. In

addition, using EIU price data, which is closely related to our data, SW obtain an estimate of

2.82 with their SMM estimator. Finally, the aggregate elasticity that Ossa (2015) employs is

2.94; this is constructed as a trade-weighted cross-industry average of his estimated sectoral

elasticities. (We return to the value of this elasticity in the next section.) These aggregate

elasticity estimates are in the same ball park as ours.22

Why, then, is the aggregate elasticity estimate lower than all of the sectoral elasticity

estimates? Conventional wisdom suggests that the aggregate elasticity should be some kind

of weighted average of the sectoral estimates. However, for the estimation methodology we,

SW, and EK use, this wisdom may not be correct. To explain this result, we first note

that we estimate the aggregate tradable elasticity using the EK methodology and obtain

θEK = 2.64, which is also smaller than the minimum of the EK sectoral elasticity estimates

(see Table 2). So, this result is not particular to the SMM methodology that SW develop and

we employ. Hence, we focus on explaining the estimates with the (simpler) EK methodology.

As a reminder, the EK methodology employs a method of moments estimator based on

one of the oldest economic principles, arbitrage. Referring back to (3.1), note that for a given

value of the left-hand side, which we will loosely refer to as a trade share, and controlling

for the sector-level price differences between countries, the estimated trade elasticity will

be smaller, the higher the estimated trade cost. The reason for this is that a given trade

share can be sustained via a high trade elasticity and a relatively low trade cost, or via a

22Head and Mayer (2014) conducts a meta-analysis of estimated trade elasticities, and the median elas-
ticity from structural gravity equations in 32 papers, out of 622 statistically significant coefficients, is 3.78.
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low trade elasticity and a relatively high trade cost. Hence, for a given trade share, a low

estimated elasticity arises because of a high estimated trade cost. In addition, the trade cost

is estimated by the max price difference. This captures the arbitrage.23 To summarize, a

low trade elasticity arises, if all else equal, there are large max price differences.

Suppose for simplicity that all else is equal; in particular, all the sectoral trade shares

are the same, and hence, the aggregate trade share equals the sectoral trade shares. In this

case, variation in elasticity estimates comes about only because of variation in (the average

across country-pairs of) the max price differences. When we go from a multi-sector setting,

in which each country-pair-sector has its own max price difference, to an aggregate setting,

in which for each country-pair there is just one max price difference (across all goods in

all sectors), it should be clear that for each country-pair, the max price difference in the

aggregate setting must be at least as large as any of the sectoral max price differences.

Moreover, suppose there are one or more country pairs in which the max price difference in

the aggregate setting is larger than the max price difference in the sector with the lowest

θs. Then, because no country-pair can have a smaller max price difference in the aggregate

setting than in any one sector, including the sector with the lowest θs, it must be the case

that the method of moments estimator, which takes the average across country-pairs, will

have a larger average max price difference in the aggregate case than in the sector with the

lowest θs. Hence, all else equal, the aggregate θEK < θsEK ∀ s.

Returning to the simplifying assumption, we find empirically that, the left-hand side of

(3.1) for the aggregate model, i.e., the aggregate trade share, is roughly equal to the average

of the left-hand sides of (3.1) for the multi-sector model, i.e., the sectoral trade shares. Hence,

the difference between the left-hand sides of (3.1) for the two models contributes little to the

difference between the aggregate θ estimate and the minimum sectoral θs estimate. Rather,

the result is driven by the combination of arbitrage and the method of moments estimator.

Appendix D provides a version of the above discussion in terms of equations, building off of

(3.2) and (3.1).

To summarize, the above discussion shows why the average max price difference across

23The right-hand side of (3.2) also includes a term, the average price difference, to capture the sector-level
price differences between countries. But, this term, when averaged across all country-pairs for the method
of moments estimation, is essentially zero, and drops out.

23



country-pairs in the aggregate economy is larger than the average max price difference across

country-pairs of any individual sector. Hence, measured trade costs in the aggregate economy

will be higher than that of any individual sector. With these higher trade costs – and when

the aggregate trade share is close to the mean of the sectoral trade shares – a given trade

share can be rationalized only with an elasticity that is lower than the minimum of the

sectoral elasticities.

We provide two additional interpretations of the low aggregate elasticity. First, in

an aggregate model, there is just one trade cost. That cost must be consistent with all

prices and price gaps (owing to arbitrage). These prices and price gaps are the source of

the “discipline” in estimating the trade costs. Hence, in order to account for the large price

gaps, a high trade cost will be the outcome, and given the trade share and the sector-level

price indices, a high trade cost can be rationalized only via a low trade elasticity.

Second, in the multi-sector model, there are really two tiers of elasticities. The goods

within a sector level are the lower tier and the relevant elasticity is across these goods for each

sector. Our median sectoral elasticity is 4.38. The upper tier is the Cobb-Douglas aggregator

of the sectoral consumption goods, in which the elasticity between the sectoral goods is, of

course, 1. By contrast, in the aggregate model, there is just one elasticity between individual

goods in the entire (tradable) economy. Hence, one way to interpret the aggregate elasticity

is as an amalgam of the two tiers of elasticities.24

We also note that there is precedent for more aggregated elasticities to be lower on

average (and on median) than the disaggregated elasticities. Broda and Weinstein (2006)

is one example. The authors estimate elasticities at the ten-digit, SITC-5, and SITC-3

categorizations and the average (median) elasticities for the 1990-2001 period are 12 (3.1),

6.6 (2.7), and 4.0 (2.2), respectively. They interpret these results as consistent with a view

that varieties are less substitutable at higher levels of aggregation. We conduct a similar

exercise by aggregating our 19 sectors to 10 sectors, and also to 4 sectors.25 Appendix F gives

our aggregation scheme. When we aggregate to 10 sectors, the range, average, and median

of the estimates are now [2.97, 5.67], 4.00, and 3.84, respectively. When we aggregate to 4

24We thank the editor for suggesting this interpretation.
25When we aggregate we maintain the size of the pool of goods at 50, 000, but our sample size that we

draw from is now the sum of the samples of the sectors that are aggregated.
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sectors the range, average, and median of the estimates are now tight [3.24, 3.57], 3.41, and

3.42. So, as we aggregate our sectors, the elasticities become smaller, exactly as in Broda

and Weinstein (2006). Section 5.2.3 provides GFT calculations for the 10-sector and 4-sector

models. As will be seen, there is not a monotonic relationship between the median or average

elasticity and the GFT; this provides evidence that the GFT are not driven solely by the

estimated elasticities.

5 Welfare Gains from Benchmark Model and from Sec-

toral Heterogeneity

We now report the welfare gains from our benchmark model; we then present our results

from two sets of counterfactual exercises on sectoral heterogeneity and the gains from trade.

5.1 Welfare Gains of Benchmark Multi-Sector Model

In implementing the “changes” methodology of Dekle, Eaton, and Kortum (2008), we use our

estimated θs’s, the other calibrated parameters described in section 3.3, and the empirical

values of Ds
ni for all country-pair-sectors and of wn for all countries, as our baseline. We then

feed into the model a 100 times increase in trade costs and compute the change in welfare

from the baseline economy (Ŵn from (2.15)). We interpret 1− Ŵn as the change in welfare

in going from autarky to the actual economy in 1990, i.e., the gains from trade.26

The gains from trade are given in Table 3. The welfare gain ranges from 0.40% for

Japan to and 7.51% for Netherlands with a median (mean) gain of 3.96% (4.05%). The gains

for small countries are about an order of magnitude larger than for the largest countries.

These gains are of similar magnitude to those in EK, for example.

We find that, in most countries, only a few sectors account for most of the welfare

gains from trade. For example, in the United States, sectors 383 (machinery, electric) and

384 (transport equipment) account for almost 90% of the gains. These two sectors, along

with sectors 341 (paper products and publishing) and 311 (food products) account for the

26We solve the model using the algorithm developed by Alvarez and Lucas (2007).
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majority of the gains from trade in most countries. By and large, these are the sectors

which are experiencing the highest trade flows, as captured by −D̂nn. That said, there is

considerable heterogeneity across countries in the importance of particular sectors to the

gains from trade. Thus, comparative advantage at the sector-level is an important factor

determining the welfare gains from trade. Our results here are consistent with Ossa (2015),

who finds with more disaggregated data that 10 percent of the industries account for 90

percent of the gains.

To summarize our results in this section, we find that variation in the gains from trade

lines up well with economic size, and that only a few sectors account for most of the gains

from trade.

Table 3: Welfare Gains from Trade: Benchmark Model

Country Gains from Trade

(percent)

AUS 2.11

AUT 4.90

BLX 6.40

CAN 3.87

DEU 1.91

DNK 5.57

ESP 2.32

FIN 3.94

FRA 2.10

GBR 2.76

GRC 4.67

IRL 8.33

ITA 3.09

JPN 0.40

MEX 3.96

NLD 7.51

NOR 5.53

NZL 4.13

PRT 5.95

SWE 4.66

USA 1.03

Average 4.05

Median 3.96

Max 8.33

Min 0.40
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5.2 Role of Sectoral Heterogeneity

Our theoretical framework has six sources of sectoral heterogeneity – trade elasticities, input-

output structure, value-added shares, final demand shares, trade costs, and productivities.

Of these, the first four show up directly in the gains from trade equation (2.15), and the

latter two show up primarily through the initial trade share Ds
nn. To assess the importance

of this heterogeneity in the gains from trade, we conduct two sets of counterfactuals.

The first set of counterfactuals starts from the benchmark model, and then replaces

one source of sectoral heterogeneity with a single parameter common to all tradable sectors.

For example, to assess the importance of heterogeneity in the sectoral value-added shares

of gross output γsn, we replace all of the sector level γsn’s with a single γn common to all

tradable sectors (but still country-specific). All other sources of heterogeneity are unchanged.

We do this exercise for the value-added shares, the final demand shares, the input-output

shares, and the trade elasticity, one at a time. We also study the effects of replacing two

sources of sectoral heterogeneity.27 These counterfactuals address the role of specific model

mechanisms, i.e., “inspect the mechanism”, and in so doing, answer the question: What is

the role of sectoral heterogeneity in a particular parameter or variable in driving the gains

from trade?

The second set of counterfactuals compares our calibrated benchmark model to our

calibrated aggregate model, in which each of the five sources of sectoral heterogeneity is

replaced with a single, aggregate value (covering all the tradable sectors). In particular, as

discussed above, the aggregate model includes our estimate for the aggregate trade elasticity.

This set of counterfactuals provides a comprehensive look at the importance of sectoral

heterogeneity, and addresses the following question: Does a calibrated multi-sector model

yield greater gains from trade than a calibrated aggregate model? These counterfactuals are

most similar to those in Ossa (2015), CP, and Costinot and Rodriguez-Clare (2014).28

27We note that for all of the counterfactuals that do not involve the trade elasticity, we do not re-estimate
the trade elasticities.

28Owing to our use of the Dekle, Eaton, and Kortum (2008) “changes” methodology, which starts from
the baseline data, all of our counterfactuals are trivially consistent with the baseline data.
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5.2.1 Importance of Individual Sources of Sectoral Heterogeneity

We start by examining the role of heterogeneity in the sector-level value-added shares of gross

output in tradable sectors, γsn’s. Specifically, for each country, we replace the sector-specific

value-added share for every tradable sector with the country’s overall tradable value-added

share. The range across countries of the common γn across tradable sectors is [0.29, 0.47].

The welfare gains for this counterfactual are listed in column 3 of Table 4, i.e., the column

labeled ‘BM1’. The table shows that the GFT with a common value-added share across

sectors are typically higher than in the benchmark case. Sectoral heterogeneity in γsn does

not lead to higher GFT; rather, it leads to lower GFT. Equation (2.15) illustrates what is

needed for the benchmark model to have higher GFT: sectors with low γsn (and hence high

Ψ̃s,s′
n ) should also be sectors with relatively low θs, high αsn, and large lnD̂s

nn. Evidently,

this is not the case. That said, it is worth noting that the benchmark model gains are only

slightly lower than in BM1.29

Table 4: Gains from Trade (percent)

Country BM BM1 BM2 BM3 BM4 BM5

AUS 2.11 2.15 1.90 2.04 1.67 1.87

AUT 4.90 4.94 4.64 4.77 4.34 4.63

BLX 6.40 6.56 5.95 6.26 1.31 6.11

CAN 3.87 3.88 2.92 3.39 3.26 3.54

DEU 1.91 1.91 1.76 1.88 1.80 1.85

DNK 5.57 5.96 5.87 5.60 4.02 5.54

ESP 2.32 2.35 2.03 2.24 2.38 2.13

FIN 3.94 4.21 3.85 3.94 3.27 3.53

FRA 2.10 2.11 1.86 1.99 1.95 1.94

GBR 2.76 2.80 2.51 2.69 2.70 2.46

GRC 4.67 4.41 4.57 4.78 4.86 4.44

IRL 8.33 8.93 8.44 8.39 5.76 7.81

ITA 3.09 3.13 2.69 3.05 3.07 2.79

JPN 0.40 0.40 0.37 0.40 0.34 0.35

MEX 3.96 3.88 3.68 3.56 3.41 3.42

NLD 7.51 7.62 7.32 7.57 6.41 7.07

NOR 5.53 5.81 6.06 5.36 4.03 5.35

NZL 4.13 4.13 3.59 3.81 2.86 3.93

PRT 5.95 5.94 4.67 5.58 4.84 5.69

SWE 4.66 4.83 5.01 4.65 3.78 4.22

USA 1.03 1.04 0.84 0.96 0.93 0.95

29We also consider a scenario in which γsn = γsn = 0.367 ∀ n, s. This value is the average across all
countries and tradable sectors of the value-added gross output ratio. The GFT were higher than in column
BM1. For example, the U.S. GFT was 1.15%.
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Average 4.05 4.14 3.83 3.95 3.19 3.79

Median 3.96 4.13 3.68 3.81 3.26 3.54

Max 8.33 8.93 8.44 8.39 6.41 7.81

Min 0.40 0.40 0.37 0.40 0.34 0.35

BM: Benchmark model; BM1: benchmark model with same γsn across

tradable sectors s; BM2: benchmark model with same αsn across trad-

able sectors; BM3: benchmark model with same ξr,sn across tradable

sectors; BM4: benchmark model with same trade share Dsni across

tradable sectors; BM5: benchmark model with median sectoral θs;

Next, we study the effects of a common final demand (domestic expenditure) share αsn

for each country across all its sectors. For each country, we take the sum across all tradable

sectors of the final domestic expenditure share, which is equivalent to 1 minus the non-traded

final domestic expenditure share, and divide by the number of tradable sectors. We use this

value for all the tradable sectors in a country. The range across countries of the common αsn

across tradable sectors is [0.0085, 0.016]. The GFT results are given in column 4 of Table 4,

i.e., the column labeled ‘BM2’. The table shows that in all but four countries, the GFT in the

benchmark model are higher than for this scenario. However, the gains for having sectoral

heterogeneity in final demand are slight. This is because, with sectoral heterogeneity in αsn,

more weight is given to sectors like ISIC 383, 384, 311 and 312. However, for most countries,

these sectors have θsn’s and γsn’s that are close to the economy-wide average. Hence, the

additional heterogeneity does not deliver significant additional gains.30

We also study the effects of sectoral heterogeneity in the input-output structure. We

impose a common input-output “use” structure across tradable sectors. In other words, for

each country-sector n, r, we set the ξr,sn to be the same ∀ tradable s. The values are the

average across all tradable columns. For example, ξ384,s
U.S. = 0.025 ∀ tradable s, which means,

that in the United States, the output of ISIC 384 (transport equipment) is used with the

same intensity as an input in all tradable sectors. The GFT results are given in column 5 of

Table 4, i.e., the column labeled ‘BM3’. The table shows that the welfare gains from a model

with a common input-output structure are smaller than in the benchmark case, although,

again, the differences are small.31

30We also consider a scenario in which αsn = αsn = 0.010 ∀ n, s. This value is the average across all
countries and tradable sectors of the final demand share. The GFT were slightly higher than in column
BM2. For example, the U.S. GFT was 0.94%.

31We also study a scenario in which every country has the same “use” structure across tradable sectors
and countries. In other words, starting from the exercise in BM3, we set the ξr,sn to be the same ∀ tradable
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We next study the effects of heterogeneity in initial import shares Ds
ni. For each country

n, we replace Ds
ni in every tradable sector with the average across all tradable sectors of Ds

ni.

The GFT results are given in column 6 of Table 4, i.e., the column labeled ‘BM4’. Overall,

the average and median GFT are 3.2% and 3.3%, respectively, which are about 20-25 percent

lower than their counterparts in the benchmark model. In other words, sectoral heterogeneity

in the tradable Ds
ni leads to greater GFT. Moreover, the benchmark model’s GFT “gap” is

larger than with any other source of heterogeneity.

Next, we examine the role of of heterogeneity in the elasticity of trade θs. A key issue

in this exercise is the value of the single elasticity. In this subsection, we have focused on

using averages as the metric for the absence of heterogeneity, so for θs, we use the median

of our sectoral theta estimates, which is 4.38. (Note, that in the next sub-section we should

not use a median, but the actual estimated aggregate elasticity.) Column 7 of table 4, i.e.,

the column labeled ‘BM5’, shows the gains from trade (GFT) when all the sectoral θs’s are

replaced by the median sectoral θs. Comparing this column to column 2 (BM), it can be

seen that the GFT are lower than in the benchmark model, i.e., heterogeneity in sectoral

θs’s leads to higher GFT. Again, however, the differences are not large. For example, the

median GFT is 3.54% in column 7 and 3.96% in the benchmark model. We can see why the

gap is small by returning to (2.15). Heterogeneity in θs will lead to larger gains from trade

to the extent that θs is small when γsn is small (and hence Ψ̃s,s′
n is large), αsn is large, and

lnD̂s
nn is large. It turns out that for most countries, ISIC 383 and 384 (electric machinery

and transport equipment) are the two sectors in which both lnD̂s
nn and αsn are both large.

However, both sectors have a θs that is close to the median value. Moreover, in most

countries, these sectors’ value-added shares, γsn, are close to the average across sectors of γsn.

Hence, for these two sectors, which are the major sources of the gains from trade for most

of the countries, replacing the sector-specific θs with the median θs changes the gains from

trade by very little. This is the main reason why the GFT in the benchmark model are only

slightly larger than the GFT in the exercise with the median sectoral θ.32

s and ∀ n. We take a simple average across countries of the ξr,sn we used in BM3. The GFT are slightly
lower than in BM3. For, example, the U.S. GFT was 0.92%.

32We also run counterfactuals with alternative common sectoral elasticities, including the median of
CP’s estimates, 4.49, SW’s preferred estimate, 4.14, and EK’s preferred estimate, 8.28. As expected, those
counterfactuals in which the common elasticity is close to our median sectoral elasticity will yield GFT close
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As an additional exercise, we compare the GFT in our benchmark model in which

our estimated sectoral elasticities are replaced by the CP (99% sample) estimated sectoral

elasticities, to the GFT in our benchmark model in which our estimated sectoral elasticities

are replaced by the median CP sectoral elasticity. In other words, we conduct the same

comparison as in the previous paragraph except with CP’s sectoral elasticities. We find the

same pattern that the benchmark model with the sectoral elasticities has greater GFT than

the same model with the median sectoral elasticity; however, quantitatively, the gap is larger

in this case than with our elasticities. For example, the median GFT for the model with CP’s

sectoral elasticities is 4.99%, while it is 3.46% in the model with CP’s median elasticity.33

We study the effects of removing two sources of sectoral heterogeneity at a time, fo-

cusing on the value-added share of gross output, γsn; the final demand share, αsn; the initial

import share, Ds
ni; and the trade elasticity, θs. The results are given in Appendix E. They

show that removing two sources of heterogeneity does lead to lower GFT than in our bench-

mark model, although the difference continues to be small – the average across all countries

and scenarios is about one-half of one percentage point. Notably, removing sectoral hetero-

geneity in γsn along with heterogeneity in one of the final demand share, the initial import

share, or the trade elasticity, now leads to lower GFT than in the benchmark model. Recall

that removing heterogeneity in γsn alone led to higher GFT than in the benchmark model.

Overall, our results are consistent with the interpretation that how the different terms in

(2.15) matters for the importance of sectoral heterogeneity in the GFT.

To summarize, we have found that removing one source of sectoral heterogeneity typi-

cally yields smaller gains from trade than in our benchmark model. However, the differences

are on the order of a half percentage point (against a median GFT in our benchmark model

of about 4 percent). We conclude that our “inspect the mechanism” exercises show that

sectoral heterogeneity has little effect on the gains from trade.34

to that in column BM1, but the counterfactual with the EK estimate leads to GFT that are about half that
in column BM1. For example, the GFT for the United States are 0.92%, 1.00%, and 0.50%, respectively.

33The mapping from CP’s sectoral elasticities to our 19 ISIC sectors is as follows: Food products: 2.62;
Beverages and Tobacco: 2.62; Textiles: 8.1; Wearing apparel: 8.1; Leather products: 8.1; Footwear: 8.1;
Wood products: 11.5; Furniture 11.5; Paper and printing: 16.52; Other chemicals: 3.13; Rubber products:
1.67; Plastic products: 1.67; Pottery: 2.41; Glass products: 2.41; Other non-metallic mineral products: 2.41;
Iron and steel: 3.28; Fabricated metal products: 6.99; Electric machinery: 12.91; and Transport equipment:
1.84.

34It is worth reiterating that each of these counterfactual exercises focuses on removing heterogeneity in
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5.2.2 Benchmark Model vs. Aggregate Model

This section presents the second set of counterfactuals. As discussed above, we calibrate

and estimate an aggregate model with just one tradable sector (and one non-tradable sec-

tor). Hence, each of the five sources of sectoral heterogeneity (across tradable sectors) is

eliminated, including the trade elasticity. Columns 2 and 3 of Table 5 show the GFT for the

benchmark model and the aggregate model, respectively. With the exception of Belgium-

Luxembourg, the gains are typically larger with the aggregate model. The median gain is

about 35%, or about 1.4 percentage points, larger than in the benchmark model. The direc-

tion of the effect is a key result: the benchmark model, with its model-consistent estimates

of sectoral trade elasticities and its five sources of sectoral heterogeneity, yields lower gains

from trade than the aggregate model, with its model-consistent estimate of the aggregate

trade elasticity, and no sources of tradable sectoral heterogeneity.

We devote the rest of this sub-section and the next sub-section to explaining and dis-

cussing this result, especially in the context of CP, Ossa (2015), and Costinot and Rodriguez-

Clare (2014). Even though there are five sources of heterogeneity, we first show that one

source, the trade elasticities, plays a key role. A central factor is the elasticities of trade in

the multi-sector benchmark model relative to the elasticity of trade in the one-sector model.

As discussed in section 4.2, our sectoral trade elasticities are higher than our aggregate elas-

ticity, while in these other three papers, the aggregate elasticity is higher than the median

of their sectoral trade elasticities.

To see the importance of this in the context of our model, we conduct a counterfactual

simulation in which we replace the sectoral elasticities in our benchmark model with our

aggregate elasticity, and then compute the gains from trade. These are illustrated in column

4 of Table 5, labeled “BM7”. The gains from trade are now about 20− 30% larger than in

the aggregate model. Hence, once we give the benchmark model the same elasticity for each

sector, i.e., the aggregate elasticity, then the benchmark model has higher GFT than the

the tradable sectors. Looming large in our model is the non-traded sector, which accounts for the majority
of value-added in each country, and the the largest input share for most country-sectors’ output. If, for
example, we repeated the exercise in BM3, but also included the non-traded sector, the GFT results would
have averaged about 30% larger than in the benchmark model. So, this would be a case in which less
heterogeneity would lead to larger gains from trade. We find a similar pattern of results when we remove
two sources of sectoral heterogeneity at a time.
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aggregate model. Only then does sectoral heterogeneity along four dimensions (all but the

sectoral trade elasticity) deliver greater GFT.

Table 5: Gains from Trade (percent)

Country BM Agg BM7 Agg1

AUS 2.11 2.78 3.43 1.51

AUT 4.90 7.16 8.39 3.94

BLX 6.40 2.20 10.99 1.20

CAN 3.87 5.37 6.45 2.94

DEU 1.91 3.02 3.39 1.65

DNK 5.57 6.59 10.00 3.62

ESP 2.32 3.99 3.90 2.18

FIN 3.94 5.36 6.43 2.94

FRA 2.10 3.23 3.56 1.76

GBR 2.76 4.39 4.49 2.40

GRC 4.67 7.20 8.06 3.96

IRL 8.33 9.25 13.96 5.12

ITA 3.09 5.14 5.09 2.81

JPN 0.40 0.59 0.65 0.32

MEX 3.96 5.67 6.22 3.11

NLD 7.51 10.11 12.67 5.60

NOR 5.53 6.83 9.66 3.76

NZL 4.13 4.68 7.14 2.56

PRT 5.95 7.90 10.27 4.36

SWE 4.66 6.24 7.66 3.42

USA 1.03 1.52 1.74 0.83

Average 4.05 5.20 6.86 2.86

Median 3.96 5.36 6.45 2.94

Max 8.33 10.11 13.96 5.60

Min 0.40 0.59 0.65 0.32

BM: Benchmark model; Agg: Aggregate Model; BM7:

benchmark model with aggregate θ; Agg1: Aggregate

model with median sectoral θs

We conduct another counterfactual exercise, in which we replace the aggregate elasticity

from the aggregate model with the median sectoral elasticity from the benchmark model.

This exercise corresponds most closely to the one in Ossa (2015) and Costinot and Rodriguez-

Clare (2014). The results are shown in column 5 of Table 5, “Agg1”. Here we see that the

GFT in the benchmark model are about 30%, or 1 percentage point, higher than in this

version of the aggregate model.35 Hence, qualitatively, we obtain the same result as Ossa

and as Costinot and Rodriguez-Clare.36

35If we use the median CP elasticity, the GFT are virtually identical to those in “Agg1”.
36Our quantitative results in this exercise are not as stark as those of Ossa (2015) and Costinot and

Rodriguez-Clare (2014). This can be explained by the fact that in the multi-sector models, much of the GFT
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We conduct one other comparison. We compare our benchmark model with the median

sectoral elasticity (“BM4” in Table 4) with the aggregate model with the median sectoral

elasticity (“Agg1” in Table 5). The GFT in the benchmark model are about 25%, or about

0.9 percentage points, higher than in the aggregate model. This exercise is analogous to,

and yields similar results as, the one in Levchenko and Zhang (2014).

5.2.3 Discussion

The preceding two sub-sections come at the question of the importance of sectoral hetero-

geneity for the GFT from opposite sides. One starts with the benchmark model and removes

one source of heterogeneity at a time. As the results in Table 4 show, removing one source

of heterogeneity typically reduces the GFT, but slightly. The second starts with the bench-

mark model and removes all sources of sectoral heterogeneity – this is our aggregate model.

As Table 5 shows, here, the GFT are higher in the aggregate model than in the benchmark

model. Further investigation shows that a key role is played by the estimated aggregate elas-

ticity, which is low relative to the estimated sectoral elasticities. We reiterate that for the

aggregate model, we estimate the model-consistent aggregate elasticity. If a median sectoral

elasticity is used instead of the estimated model-consistent elasticity, then the GFT in the

benchmark model are higher than in the aggregate model, which is a result similar to what

Ossa (2015) and Costinot and Rodriguez-Clare (2014) obtain.

As we have stated above, we believe the appropriate comparison between the bench-

mark model and the aggregate model should involve model-consistent values of all the pa-

rameters and exogenous variables. Regarding the trade elasticity, the model treats all goods

within a sector, or within the aggregate economy, as symmetric. This is how we treat the

goods in the estimation of the elasticities. And, as we have shown, these elasticity estimates

play a critical role.

Neither Costinot and Rodriguez-Clare (2014) nor Ossa (2015) uses a model-consistent

is driven by the sectors with the lowest elasticities. In Ossa’s multi-sector model, a number of elasticities
are close to and even less than 1. All else equal, an elasticity of 1 delivers 10 times the gains from trade as
an elasticity of 10. Put differently, the gains in a world with two sectors with elasticities of 1 and 10 will
be several times larger than the gains in a world with two sectors with elasticities both equal to 5. Indeed,
Ossa (2015) shows that just 10 percent of the industries account for 90 percent of the gains. In private
correspondence, Ossa indicated that these industries were largely the industries with the lowest elasticities.
We thank Ossa for this correspondence.
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estimate of the aggregate elasticity. In both papers, the aggregate elasticity that is used

is greater than the median of the sectoral elasticities. The former paper uses 5 as the

aggregate elasticity, drawn from Head and Mayer (2014), while the median of their multi-

sector elasticities (which come from CP) is 3.965. The latter paper calculates a trade-

weighted average of the sectoral elasticities, and obtains an aggregate trade elasticity, 2.94,

that is considerably larger than the median of the sectoral trade elasticities, 1.91. It should

be noted, however, that there is no theoretical reason to use a trade-weighted average. Our

counterfactual exercises above suggest that this elasticity “gap” is an important reason why

the GFT are larger in their multi-sector models compared to their aggregate models. We

also believe there are good reasons to expect the gap to be smaller, if not reversed, if model-

consistent estimates are used.

For example, Ossa’s approach draws from Broda and Weinstein (2006). As discussed

in section 4.2, in addition to estimating elasticities at a highly disaggregated level Broda and

Weinstein (2006) study the effects of aggregation on their estimated elasticities, and they

find that both the average and median decline with aggregation. Hence, for their estimates,

it is likely that an aggregate elasticity estimate would be lower than the median sectoral

elasticity. We can ask what would Ossa’s aggregate elasticity need to be in order for his

aggregate GFT to match his multi-sectoral GFT? Based on Ossa (2015), Table 2, columns

1-3 (with no adjustment for intermediate and non-traded goods), it would need to be around

1, which is a plausible number.

CP is one of the few papers that also estimates an aggregate elasticity in a model-

consistent way. Their aggregate elasticity, 4.49 is about 0.5 higher than their median sec-

toral elasticity. The higher aggregate elasticity appears to play some role in their finding

that the multi-sectoral model yields greater gains than the one-sector model. We recognize

that different estimation methodologies applied to different data sets could lead to different

results.

We return to the words “sectoral heterogeneity”. They can have multiple interpreta-

tions. One rationale for using the median sectoral elasticity (or a similar average of sectoral

elasticities) as a proxy for the aggregate elasticity is if we interpret sectoral heterogene-

ity as a “mean-preserving spread”, similar to the way macroeconomists interpret a change
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in risk.37 Then, comparing the GFT with a median sectoral elasticity (rather than the

model-consistent estimated elasticity), would reveal how the GFT are affected by a change

in the “variance” of the elasticities. The comparison between the benchmark model and

the “Agg1” column is consistent with this rationale. Moreover, the mean-preserving spread

concept would be compatible with our first set of counterfactual exercises in which we shut

down sectoral heterogeneity one model mechanism at a time. However, as we have argued,

for an assessment of the importance of sectoral heterogeneity across many dimensions, we

should compare a multi-sector model with model-consistent parameters against an aggregate

model with model-consistent parameters.

As presented in section 4.2, in the spirit of Broda and Weinstein (2006), we estimated

elasticities for 10 and 4 tradable sectors. We found that as the number of sectors falls,

and there is more aggregation, the estimated elasticities are typically lower. The median

elasticities for the 10-sector and 4-sector models are 3.8 and 3.4, respectively. We now

conduct GFT calculations for both of these models and the results are indicated in columns

“10sec” and “4sec” in Table 6. For comparison, the benchmark model and aggregate model

results are also included in columns two and five. Going from left to right, and looking at

individual countries, we can see that for many of them there is not a monotonic pattern

in which the GFT increase as the number of sectors (and the estimated elasticities) falls.

For example, the GFT in the 10-sector model are virtually identical that of the benchmark

model (which has 19 tradable sectors). Indeed, for more than half the countries, the GFT

are slightly larger in the benchmark model than in the 10-sector model. Also, the GFT

results for the 4-sector model are only about 0.2 percentage points higher larger than that

of the 10-sector model. Finally, the GFT of the aggregate model are about 1 percentage

point higher than in the 4-sector model. Overall, these results suggest that the magnitudes

of the (appropriately estimated) elasticities are he most important force in the GFT, but

other forces – such as input-output linkages and trade shares – do matter.

Table 6: Gains from Trade (percent)

Country BM 10sec 4sec Agg BMSimAgg

AUS 2.11 2.02 2.08 2.78 2.52

37For example, the main framework in Imbs and Mejean (2015) is one in which the aggregate elasticity is
a mean-preserving spread of the sectoral elasticities.
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AUT 4.90 5.03 5.35 7.16 6.52

BLX 6.40 6.61 3.62 2.20 2.00

CAN 3.87 3.88 4.47 5.37 4.89

DEU 1.91 1.98 2.10 3.02 2.75

DNK 5.57 5.14 5.55 6.59 6.01

ESP 2.32 2.38 2.77 3.99 3.63

FIN 3.94 3.95 4.18 5.36 4.88

FRA 2.10 2.08 2.33 3.23 2.94

GBR 2.76 2.80 3.09 4.39 3.99

GRC 4.67 4.99 6.02 7.20 6.56

IRL 8.33 8.19 8.40 9.25 8.44

ITA 3.09 3.07 3.52 5.14 4.68

JPN 0.40 0.38 0.42 0.59 0.54

MEX 3.96 4.11 3.90 5.67 5.16

NLD 7.51 7.46 7.50 10.11 9.22

NOR 5.53 5.45 6.18 6.83 6.22

NZL 4.13 3.94 4.57 4.68 4.26

PRT 5.95 6.08 6.65 7.90 7.20

SWE 4.66 4.61 4.62 6.24 5.68

USA 1.03 1.02 1.18 1.52 1.38

Average 4.05 4.06 4.21 5.20 4.74

Median 3.96 3.95 4.18 5.36 4.88

Max 8.33 8.19 8.40 10.11 9.22

Min 0.40 0.38 0.42 0.59 0.54

BM: Benchmark model; 10sec: 10 sector model; 4sec: 4 sector

model; Agg: Aggregate model; BMSimAgg: Aggregate model

parameterized from simulated benchmark model

In detail, we explain the U.S. GFT results for the 10-sector vs. 4-sector model and for

the 4-sector vs. aggregate model. For the first comparison, the vast majority of the gains

are driven by two sectors in the 10-sector model (collectively, ISIC 383 and 384, electric

machinery and transport equipment), and by one sector in the 4-sector model (collectively,

ISIC 371, 381, 383, 384, hereafter “heavy manufacturing”). And it turns out the GFT

contributed by these two sectors in the 10-sector model are about the same as the GFT

contributed by this single sector in the 4-sector model. The trade elasticities for the two

sectors in the 10-sector model are 3.27 and 4.47, and the trade elasticity for the single sector

in the 4-sector model is 3.27. Based on the elasticities alone, it would be expected that the

gains from trade would be larger in the 4-sector model. It turns out that the sector in the

10-sector model with the higher θs (which would normally imply lower GFT), also has a

large D̂s
nn, and a relatively high αsn, and low γsn. So, these three forces offset the higher θs,

and lead to GFT about the same as in the 4-sector model.

37



For the second comparison, as mentioned above, in the 4-sector model, most of the

GFT are driven by one sector (heavy manufacturing). So let us compare this sector in the

4-sector model to the aggregate model. The aggregate model has a smaller D̂nn, but a higher

αn than heavy manufacturing; it turns out these two forces just offset each other. The value-

added gross output ratios γn are about the same. So, it boils down to the trade elasticities

θ. In the aggregate model it is 2.37, and in the heavy manufacturing sector, it is 3.27. This

accounts for most of the difference. If the trade elasticity in heavy manufacturing was 2.37,

then, three-fourths of the gap in the GFT would be eliminated.

To provide further evidence in support of our aggregate elasticity estimate, we conduct

a Monte Carlo type exercise in which we simulate data from our benchmark multi-sector

model and, then, treat that data as if it were generated from an aggregate model. We

then estimate a single aggregate elasticity using the SW SMM methodology, and with that

elasticity, and the other aggregate values of parameters and data, compute the GFT.

Specifically, using our estimated sectoral θs’s and country-sector T sn’s, we simulate

prices and trade shares from our multi-sectoral model by following steps 3-7 in Appendix

7.3. This generates a sample of 1410 prices (with the number of prices from each sector

corresponding to the actual data), and of bilateral sectoral trade shares. We aggregate the

sectoral trade shares by using the sectoral expenditure shares (αsn) to yield the aggregate

trade share Dni
Dii

.38 We treat this simulated aggregate trade share and the simulated prices

as the “actual” data for an aggregate world, and then follow steps 1-9 in Appendix 7.3 to

estimate the aggregate θ just as we did for the true actual data.39 Our SMM estimates for

aggregate θ are in a tight range, and the median (across Monte Carlo simulations) is 2.61,

which is close to our actual estimate of 2.37. The important message from this exercise is

that an aggregate θ estimate that is less than the minimum of the sectoral θs estimates is a

consistent model-based outcome.

With this simulated estimate of the aggregate θ, we then conduct the GFT calculations

38One way to understand the reason for using the sectoral expenditures shares is the following: The
Monte Carlo exercise uses the estimated sector level T sn’s. These T sn’s do not capture the relative size of
sectors, whereas in the aggregate theta estimation, which used an aggregate gravity equation, the estimated
Tn implicitly reflects the relative size of the sectors. The relative size of the sectors needs to be captured via
an adjustment, which is the expenditure share of each sector.

39Specifically, we run 10 Monte Carlo simulations. In each, we simulate 50, 000 goods per tradable sector,
or 950, 000 goods total.
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in the same way we did before. These results are given in the final column of Table 6. The

GFT are about a half percentage point lower than in the aggregate model, which would be

expected as our θ estimate for the Monte Carlo exercise is close to our aggregate θ estimate.

The median GFT is close to a full percentage point higher than the median GFT in the

benchmark model.

There are two lessons from our 10-sector and 4-sector aggregation exercise and from

our Monte Carlo exercise. First, while the elasticity estimates may be the single most

important force driving the GFT results in the benchmark vs. aggregate model, they are

not the only force that matters. Second, our results are, in a sense, doubly model-consistent

– a model-consistent estimate of an aggregate elasticity that is generated from a simulation

of our benchmark model with model-consistent estimates of sectoral elasticities yields an

elasticity that is close to our actual aggregate elasticity estimate, and GFT fairly close to

the benchmark model GFT.

6 Conclusion

The goal of our paper is to quantitatively assess the role of sectoral heterogeneity in the gains

from trade. To do so, we start from a benchmark 20-sector, 21-country Eaton-Kortum-type

Ricardian trade model that draws from Caliendo and Parro (2015) and Alvarez and Lucas

(2007). We estimate the sectoral trade elasticities using micro-price data and the SMM

estimator developed by Simonovska and Waugh (2014a). Other parameters and variables

are calibrated directly from the data. With the benchmark model, we compute the gains

from trade (GFT) relative to autarky, and we then conduct two sets of counterfactuals.

In the first set, we start from the benchmark model and shut down one or two sources of

heterogeneity at a time, which we think of as “inspect the mechanism” exercises. In the

second set, we compare the benchmark model against an aggregate model in which the

aggregate trade elasticity is also estimated via SMM.

Our main result from both sets of counterfactuals is that increased heterogeneity does

not necessarily imply increased GFT. This should be clear as a theoretical matter from the

welfare gains formulas developed in CP, Ossa (2015), Costinot and Rodriguez-Clare (2014),
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and other papers. It depends on how sectoral value-added shares, final demand shares, trade

elasticities, input-output linkages, and domestic expenditure shares interact with each other

However, it remained a quantitative question as to whether this holds in the data. Previous

research had suggested that sectoral heterogeneity does lead to significantly higher gains.

Our paper shows that this is not true. Moreover, for most of the counterfactuals we run,

sectoral heterogeneity only makes a small difference.

The main difference between our results and the previous research is that we use model-

consistent trade elasticity estimates of both our benchmark model and our aggregate model.

By contrast, much of the previous research uses an average of the sectoral elasticities as a

stand-in for the aggregate elasticity. As our work, and previous research, have shown, an

appropriate estimated aggregate elasticity is likely to be less than an average of sectoral

elasticities. With a lower elasticity, all else equal, there will be greater GFT.

Our results suggest the following question: Can the aggregate elasticity in a framework

without all the rich sectoral heterogeneity of our benchmark model be thought of as the

elasticity that best captures that heterogeneity in a way to yield roughly similar GFT? This

question is broadly related to the themes of Costinot and Rodriguez-Clare (2018) and Adao,

Costinot, and Donaldson (2017), which develop a mapping from potentially rich and complex

trade frameworks to the implicit demand for foreign factor services, in which there is just

one relevant elasticity. This is one avenue for future research.

While our Caliendo and Parro (2015) framework permits a great deal of heterogeneity,

it does not allow for heterogeneity of entry into production as in Melitz (2003), Melitz and

Redding (2015), and Simonovska and Waugh (2014b), for example. In addition, modeling

the distribution sector, as in Giri (2012), for example, could improve the mapping of the

price data to the model counterparts. These are two additional avenues for future research.
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7 Appendix

7.1 Appendix A: Equilibrium in Relative Changes

The counterparts to (2.4),(2.8), (2.9), (2.10), and (2.11) expressed in relative terms are given

below:

P̂ s
n =

(
N∑
i=1

Ds
ni

(
ĉsi d̂

s
ni

)−θs)−1
θs

(7.1)

D̂s
ni =

(
ĉsi d̂

s
ni

P̂ s
n

)−θs
(7.2)

LnX
s
n
′ = αsnw

′
nLn +

S∑
r=1

(1− γrn) ξs,rn

N∑
i=1

LiX
r
i
′Dr

in
′ . (7.3)

S∑
s=1

LnX
s
n
′ =

S∑
s=1

N∑
i=1

LiX
s
i
′Ds

in
′ (7.4)

Lnw
′
nl
s
n = γsn

N∑
i=1

LiX
s
i
′Ds

in
′ , s = 1, ..., S (7.5)

7.2 Appendix B: Calibrating Parameters of Production Function

We need to calibrate two sets of parameters of the production function. First, the ratio

of value-added to gross output - γsn. Second, the use of a sector r composite good as an

intermediate input to produce sector s goods - ξr,sn .

To compute γsn for the tradable sectors, we take the ratio of value-added to gross output.

Data on value added and gross output for each sector in every country come from the World

Bank TPP database for the year 1990. Missing data on the two series were replaced by

data from OECD STAN database. Furthermore, for the non-traded sector, which includes

all sectors except manufacturing, the value-added to gross output ratio was computed using

the OECD STAN Database.

Data to construct ξr,sn come from the 1995 national input-output tables (NIOT) of the
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World Input-Output Database (WIOD), release 2013 (Timmer, Dietzenbacher, Los, Stehrer,

and de Vries (2015)). The sector definition differs from that used in the TPP database, and

therefore we mapped the WIOD sectors into our 19 TPP sectors. The mapping is provided

in Table 7.

Table 7: Concordance between TPP and WIOD Sectors

TPP ISIC Code TPP Sector Description WIOD Sector

311 Food products
Food, Beverages and Tobacco

313,314 Beverages and Tobacco

321 Textiles
Textiles and Textile Products

322 Wearing apparel, except footwear

323 Leather products
Leather, Leather and Footwear

324 Footwear, except rubber or plastic

331 Wood products, except furniture
Wood and Products of Wood and Cork

332 Furniture, except metal

341,342 Paper and products and printing and publishing Pulp, Paper, Paper , Printing and Publishing

352 Other chemicals Chemicals and Chemical Products

355 Rubber products
Rubber and Plastics

356 Plastic products

361 Pottery, china, earthenware

Other Non-Metallic Mineral362 Glass and products

369 Other non-metallic mineral products

371 Iron and steel
Basic Metals and Fabricated Metal

381 Fabricated metal products

383 Machinery, electric Electrical and Optical Equipment

384 Transport equipment Transport Equipment

As is evident from the table, there is greater level of disaggregation within manu-

facturing in the TPP data than in the WIOD input-output tables, and therefore multiple

TPP sectors span a given WIOD sector. As a result, the intermediate input use coefficients

(share of a “supply” sector in the total expenditure of “use” sector on intermediates) for

WIOD sectors had to be split between multiple TPP sectors. Due to a lack of information,

we performed an equal split across TPP sectors. For example, consider the supply WIOD

sector (r) “Food, Beverages and Tobacco” (FBT) and let’s denote its use in every use sec-

tor s by γFBT,sn . Then the coefficients for the corresponding supply TPP sectors - “Food

products” (F) and “Beverages and Tobacco” (BT) - are given by γF,sn = γBT,sn = γFBT,sn /2.

Furthermore, continuing with this example, the split will also imply that we will now have

two identical sets of input use coefficients for the two use sectors at the TPP level - one for

“Food products” (F) and the other for “Beverages and Tobacco” (BT) - instead of the single
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set for “Food, Beverages and Tobacco” (FBT) at the WIOD level. Importantly, the split

does not affect that fact that for a use sector s
∑S+1

r=1 ξ
r,s
n = 1.40

Lastly, consistent with our definition of the the non-traded sector, all other WIOD

sectors were aggregated into the single non-traded sector, and therefore (a) expenditure

of a manufacturing sub-sector on the non-traded sector’s good is simply the sum of ex-

penditures across all non-manufacturing WIOD sectors, and (b) expenditure of the single

non-traded sector on a manufacturing sub-sector’s good is the sum of expenditures across

all non-manufacturing WIOD sectors on that sub-sector’s good.

7.3 Appendix C: Methodology for Estimating Sector-Level θ’s and dij’s

For two countries i and j and for sector s, recall that we use (2.8) to obtain:

Ds
ni

Ds
ii

=
(As)−θ

s
(
csi d

s
ni

P sn

)−θs
λsi

(As)−θ
s
(
csi d

s
ii

P si

)−θs
λsi

=

(
P s
i d

s
ni

P s
n

)−θs

This corresponds to equation (12) in EK at the sectoral level. The log version of this

expression can be estimated for each sector individually to obtain the θs’s that correspond

to θ in EK.41 The log version can be written as:

log

(
Ds
ni

Ds
ii

)
= −θs log

(
P s
i d

s
ni

P s
n

)
, (7.6)

and similar to EK and SW, we use

log

(
P s
i d

s
ni

P s
n

)
= max

x
{rni (xs)} −

Hs∑
j=1

[rni (x
s)]

Hs
,

where rni (x
s) = log psn (xs)− log psi (xs), maxx means the highest value across goods, and Hs

40We dropped three WIOD sectors due to lack of a clear mapping into the 19 TPP sectors. These WIOD
sectors include - Coke, Refined Petroleum and Nuclear Fuel, Machinery, Nec, and Manufacturing, Nec;
Recycling. Thus, to begin with the WIOD input use coefficients for every use sector s was normalized by the
sum across the r supply sectors to ensure that

∑S+1
r=1 ξ

r,s
n = 1 for every s at the WIOD level of disaggregation.

41if we had only one sector, we would have θ = θEK where θEK represents θ in EK
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is the number of goods in sector s of which prices are observed in the data. This corresponds

to equation (13) in EK.

Using (3.1), we employ two methods to estimate sector-level θ’s: (i) method-of-moments

(MM) estimator used by EK; (ii) simulated-method-of-moments (SMM) estimator used by

SW. While the former is the mean of the left-hand-side variable over the mean of the right-

hand-side variable in (3.1), the latter is much more detailed. The SMM estimator can be

obtained as follows for each sector s:

1. Estimate θs using MM estimator (as in EK) together with trade and price data in

(3.1). Call this θsEK .

• Note: this is done for only the EU countries for which we have price data.

2. Estimate gravity equation using the specification employed in SW:

Ds
ni

Ds
nn

=
(As)−θ

s
(
csi d

s
ni

P sn

)−θs
λsi

(As)−θ
s
(
csnd

s
nn

P sn

)−θs
λsn

=

(
csid

s
ni

csn

)−θs
λsi
λsn

In logs, the above becomes:

ln

(
Ds
ni

Ds
nn

)
= ln

(
(csi )

−θs λsi

)
− ln

(
(csn)−θ

s

λsn

)
− θs ln (dsni)

and can be estimated with fixed effects as follows:

ln

(
Ds
ni

Ds
nn

)
= T si − T sn − θs ln (dsni) , (7.7)

where

T si = ln
(

(csi )
−θs λsi

)
and

T sn = ln
(

(csn)−θ
s

λsn

)
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and

ln dsni = distI︸︷︷︸
distance

+ brdr︸︷︷︸
border

+ lang︸︷︷︸
language

+ tblkG︸ ︷︷ ︸
trade block

+ srcsi︸︷︷︸
source effect

+ εsni .

where distI (I = 1, . . . , 6) is the effect of distance between n and i lying in the Ith

interval, brdr is the effect of n and i sharing a border, lang is the effect of n and i sharing

a language, tblkG (G = 1, 2) is the effect of i and j belonging to a free trade area G, and

srcsi (i = 1, . . . , N) is a source effect. The error term εsni captures trade barriers due

to all other factors, and is assumed to be orthogonal to the regressors. The errors are

assumed to be normally distributed with mean zero and variance, σε. The six distance

intervals (in miles) are: [0, 375); [375, 750); [750, 1500); [1500, 3000); [3000, 6000) and

[6000,maximum]. The two free trade areas are the European Union (EU) and the

North-American Free Trade Agreement (NAFTA). T si is captured as the coefficient on

source-country dummies for each sector s.

Because there are zero-trade observations in trade data, we use Poisson pseudo maxi-

mum likelihood (PPML) estimation as advocated in Silva-Tenreyo (2006).

3. SW show that the inverse of the marginal cost of production in sector s of country n,

which is given by:

usn =
zsn (xs)

csn

is distributed according to:

M s
n (usn) = exp

(
− (exp (T sn)) (usn)−θ

s
)

where T sn = ln
(

(csn)−θ
s

λsn

)
is the country-fixed effect estimated above.

• This can also be done by using the “inverse transform method”. The idea is

that probability draws from the Fréchet(exp (T sn) , θs) can be transformed into

random draws from a standard uniform distribution. If m has a standard uniform

distribution, then the inverse of the marginal cost is given by

(
log(m)

− exp (T sn)

)− 1
θs

.
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We adopt this method in the code. This is in line with SW.

4. Therefore, for a given θs, say, θsG, we can use the estimated gravity equation’s source

dummies (T sn’s) to estimate source marginal costs, and the coefficients on the trade

cost measures to estimate bilateral trade costs (dsij).

5. Using the inverse of the marginal costs, and the trade costs, we compute, for each

good, the set of all possible destination prices. Then, select the minimum price for

each destination:

psn (xs) = min
i

{
csid

s
ni

zsi

}
This is the simulated equilibrium price for one good. We allow for 50, 000 possible

goods in each sector. These simulated prices represent the pool of prices that samples

will be drawn from.

6. Given the simulated equilibrium prices, psn (xs), the price P s
n of the sector-level con-

sumption index Cs
n can be simulated as follows:

P s
n =

[∫ 1

0

psn (xs)1−σ dxs
] 1

1−σ

,

where we use σ = 2 following SW. The expenditure of country n on good x imported

from country i is given by:

psn(xs)qsn(xs) =

(
psn(xs)

P s
n

)1−σ

Xs
n ,

where Xs
n is the total expenditure by country n on sector s goods, i.e., Xs

n = P s
nC

s
n.

Adding this expenditure across all goods imported by n from i, and then dividing both

sides by Xs
n gives us the simulated trade share:

D̂s
ni =

Xs
ni

Xs
n

=

∫
Ωni

(
psn(xs)

P s
n

)1−σ

dxs ,

where Ωni is the set of goods imported by country n from country i.
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7. We want to include an error term into these simulated trade shares. To do so, we

conduct the following steps:

(a) Calculate the trade shares normalized by the importing country’s own trade share,

i.e., D̂s
ni/D̂

s
nn.

(b) Take the logarithm of these normalized trade shares and add the residuals from

the gravity equation (with replacement in each simulation). This gives us the log

normalized trade shares with errors. Denote these by log (Ds
ni/D

s
nn).

(c) Take the exponential of this to get Ds
ni/D

s
nn. These are the normalized simulated

equilibrium trade shares.

(d) Finally, we unwind these normalized trade shares into levels to get Ds
ni. To do

that, we use that fact that for an importing country n, the sum of its trade shares

across all suppliers i = 1, . . . , N is one, i.e.,
∑N

i=1Dni = 1. So, it is implied

that
∑N

i=1 (Ds
ni/D

s
nn) = 1/Ds

nn. Accordingly, we divide the normalized trade

shares Ds
ni/D

s
nn by 1/Ds

nn, and that gives us the level trade share Ds
ni which,

importantly, incorporates the residuals from the gravity equation.

8. Using the simulated trade (incorporating the residuals) shares and the simulated prices,

draw goods prices – the actual number equals the number of goods in our sample (in

the sector) – and trade shares from the pool of simulated prices and trade shares.

Estimate θs using the MM estimator (as in EK) according to:

log

(
Ds
ni

Ds
ii

)
︸ ︷︷ ︸

Simulated Trade Data

= −θsS log

(
P s
i d

s
ni

P s
n

)
︸ ︷︷ ︸

Simulated Price Data

which we call θsS. We repeat this exercise 1, 000 times.

• This is done for only the EU countries for which we have price data.

9. Within 1, 000 simulated θsS’s, we search for θsG, that minimizes the weighted distance
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between θsEK and the average θsS:

θsSMM = arg min
θsG

[(
θsEK −

1

1000

1000∑
s=1

θsS

)
W

(
θsEK −

1

1000

1000∑
s=1

θsS

)]

where W is the continuously updated weighting matrix defined as:

W =
1

1000

1000∑
s=1

θsS

[(
θsEK −

1

1000

1000∑
s=1

θsS

)(
θsEK −

1

1000

1000∑
s=1

θsS

)]

We also used alternative W definitions such as (i) the one used by Eaton, Kortum, and

Kramarz (2011) based on bootstrapping, (ii) an alternative version of W above which

is

WA=
1

1000

1000∑
s=1

θsS


((

θsEK − 1
1000

1000∑
s=1

θsS

)
− 1

1000

1000∑
s=1

(
θsEK − 1

1000

1000∑
s=1

θsS

))
×
((

θsEK − 1
1000

1000∑
s=1

θsS

)
− 1

1000

1000∑
s=1

(
θsEK − 1

1000

1000∑
s=1

θsS

))


and (iii) the identity matrix; however, the results were very close to each other. Cur-

rently, we are using the benchmark W defined above. The selected θsG is the SMM

estimate of θs, which we denote by θsSMM .

Following Eaton, Kortum, and Kramarz (2011) and SW, we calculate standard errors

using a bootstrap technique, taking into account both sampling error in the trade shares and

simulation error. In addition, owing to the fact that some sectors have a small number of

prices (an issue that the other two papers did not face, as they estimated only an aggregate

elasticity), we have added sampling error in the price data. That is, we are treating the prices

as a sample, not a population. This adds an extra step to the bootstrapped methodology.

particular, we proceed as follows:

1. Assume that the error terms in equation of (7.6) have a log normal distribution. Draw

error terms from that distribution and add them to the fitted values of equation (7.6).

This will generate a new set of data for the left hand side of equation (7.6).

2. Following Steps 2-5 of SMM estimation above, randomly draw goods prices to generate
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a new set of prices using θsSMM , where the number of draws matches the actual number

of goods in the price data. This will generate a new set of data for the right hand side

of equation (7.6).

3. For each re-sampling b, with the newly generated data set, estimate θsb,SMM by following

all 9 steps for SMM estimation above.

4. Repeat this exercise 25 times and compute the estimated standard error of the estimate

of θsSMM as follows:

S.E. (θsSMM) =

[
1

25

25∑
b=1

(
θsb,SMM − θsSMM

)′ (
θsb,SMM − θsSMM

)] 1
2

where θsb,SMM is a vector with the size of (25× 1).

7.4 Appendix D: Comparison of EK estimator across one-sector

and multi-sector models

EK estimator at the sectoral level uses the following expression:

log

(
Ds
ni

Ds
ii

)
= −θs log

(
P s
i d

s
ni

P s
n

)
(7.8)

where

log

(
P s
i d

s
ni

P s
n

)
= max

x
{rni (xs)} −

Hs∑
x=1

[rni (x
s)]

Hs
(7.9)

Similarly, EK estimator at the aggregate level uses:

log

(
Dni

Dii

)
= −θ log

(
Pidni
Pn

)
(7.10)

where

log

(
Pidni
Pn

)
= max

x
{rni (x)} −

H∑
x=1

[rni (x)]

H
(7.11)

In order to make a comparison between the one-sector θ and multi-sector θs’s, for
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simplicity, assume that:

log

(
Ds
ni

Ds
ii

)
︸ ︷︷ ︸
Multi-Sector

= log

(
Dni

Dii

)
︸ ︷︷ ︸

One-Sector

for all s (7.12)

and
Hs∑
x=1

[rni (x
s)]

Hs︸ ︷︷ ︸
Multi-Sector

=

H∑
x=1

[rni (x)]

H︸ ︷︷ ︸
One-Sector

= 0 for all s (7.13)

which implies that comparison of estimates reduces to the following comparison of right-

hand-sides:

log

(
P s
i d

s
ni

P s
n

)
= max

x
{rni (xs)}︸ ︷︷ ︸

Multi-Sector

versus log

(
Pidni
Pn

)
= max

x
{rni (x)}︸ ︷︷ ︸

One-Sector

where, due to using the max operator, we can write:

max
x
{rni (x)} = max

s

{
max
x
{rni (xs)}

}
Hence, for each country pair n, i, the maximum price difference for the one-sector model is

the maximum (across sectors) of the sector-specific maximum price differences.

Within this picture (i.e., when equations 7.12 and 7.13 hold), assume that sector L has

the lowest sector-level θs estimate (compared to other sectors). Now, consider two cases:

1. Case #1: Assume that for all country pairs, sector L has the maximum price differ-
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ence. Hence, in technical terms, for all n, i, we have:

max
x
{r12 (x)} = max

s

{
max
x
{r12 (xs)}

}
= max

x

{
r12

(
xL
)}

max
x
{r13 (x)} = max

s

{
max
x
{r13 (xs)}

}
= max

x

{
r13

(
xL
)}

.

.

.

max
x
{rni (x)} = max

s

{
max
x
{rni (xs)}

}
= max

x

{
rni
(
xL
)}

In this case, because the average across country pairs is used for the (RHS of) MM

estimator, we have the following:

θL︸︷︷︸
Multi-Sector

= θ︸︷︷︸
One-Sector

which means that one-sector θ equals the lowest θs across sectors.

2. Case #2: At least for one country pair (say, 1, 2), a sector other than L (call this

other sector M) has the maximum price difference. In technical terms, we have:

max
x
{r12 (x)} = max

s

{
max
x
{r12 (xs)}

}
= max

x

{
r12

(
xM
)}

> max
x

{
r12

(
xL
)}

max
x
{r13 (x)} = max

s

{
max
x
{r13 (xs)}

}
= max

x

{
r13

(
xL
)}

.

.

.

max
x
{rni (x)} = max

s

{
max
x
{rni (xs)}

}
= max

x

{
rni
(
xL
)}

In this case, because the average across country pairs is used for the (RHS of) MM

estimator, we have the following:

θL︸︷︷︸
Multi-Sector

> θ︸︷︷︸
One-Sector
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since maxx
{
r12

(
xM
)}

> maxx
{
r12

(
xL
)}

in the first line above.

Hence, theoretically, when equations 7.12 and 7.13 hold, we have:

θL︸︷︷︸
Multi-Sector

≥ θ︸︷︷︸
One-Sector

Our data suggest that Case #2 (introduced above) holds empirically, and equations 7.12 and

7.13 hold approximately. Hence, empirically, we have:

θL︸︷︷︸
Multi-Sector

> θ︸︷︷︸
One-Sector

7.5 Appendix E: Counterfactuals Removing Two Sources of Heterogeneity

Table 8: Gains from Trade

Country BM BM8 BM9 BM10 BM11 BM12 BM13

AUS 2.11% 1.70% 1.58% 1.52% 1.94% 1.91% 1.77%

AUT 4.90% 4.39% 4.16% 3.92% 4.68% 4.67% 4.53%

BLX 6.40% 1.34% 1.22% 1.16% 6.14% 6.27% 5.87%

CAN 3.87% 3.33% 2.95% 2.91% 3.04% 3.52% 2.88%

DEU 1.91% 1.82% 1.70% 1.63% 1.78% 1.85% 1.78%

DNK 5.57% 4.30% 3.79% 3.56% 6.30% 5.94% 6.35%

ESP 2.32% 2.42% 2.24% 2.14% 2.09% 2.16% 1.96%

FIN 3.94% 3.45% 3.05% 2.81% 4.13% 3.77% 3.69%

FRA 2.10% 1.97% 1.81% 1.75% 1.90% 1.95% 1.80%

GBR 2.76% 2.74% 2.54% 2.37% 2.56% 2.48% 2.35%

GRC 4.67% 4.56% 4.64% 4.39% 4.30% 4.16% 4.64%

IRL 8.33% 6.19% 5.56% 5.06% 8.83% 8.32% 8.51%

ITA 3.09% 3.10% 2.93% 2.78% 2.74% 2.82% 2.53%

JPN 0.40% 0.34% 0.31% 0.31% 0.39% 0.35% 0.35%

MEX 3.96% 3.42% 3.20% 3.03% 3.73% 3.37% 3.32%

NLD 7.51% 6.54% 6.04% 5.66% 7.52% 7.17% 7.14%

NOR 5.53% 4.25% 3.74% 3.54% 6.37% 5.63% 6.31%

NZL 4.13% 2.89% 2.72% 2.61% 3.61% 3.92% 3.55%

PRT 5.95% 4.89% 4.63% 4.40% 4.71% 5.68% 4.66%

SWE 4.66% 3.90% 3.50% 3.30% 5.20% 4.36% 4.95%

USA 1.03% 0.95% 0.86% 0.82% 0.86% 0.95% 0.83%

Average 4.05% 3.26% 3.01% 2.84% 3.94% 3.87% 3.80%

Median 3.96% 3.33% 2.95% 2.81% 3.73% 3.77% 3.55%

Max 8.33% 6.54% 6.04% 5.66% 8.83% 8.32% 8.51%

Min 0.40% 0.34% 0.31% 0.31% 0.39% 0.35% 0.35%
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BM: Benchmark model; BM8: benchmark model with same Dsni and γsn across

tradable sectors; BM9: benchmark model with same Dsni and αsn across tradable

sectors; BM10: benchmark model with same Dsni, and median sectoral θs, across

tradable sectors; BM11: benchmark model with same γsn and αsn across tradable

sectors; BM12: benchmark model with same γsn, and median sectoral θs, across

tradable sectors; BM13: benchmark model with same αsn, and median sectoral

θs, across tradable sectors

7.6 Appendix F: Other

Table 9: List of Sectors: ISIC Revision 2 and Tradable Sectoral Aggregation

ISIC Code Sector Description 10-sector 4-sector

311 Food products 1 1

313,314 Beverages and Tobacco 1 1

321 Textiles 2 2

322 Wearing apparel, except footwear 2 2

323 Leather products 3 2

324 Footwear, except rubber or plast 3 2

331 Wood products, except furniture 4 2

332 Furniture, except metal 4 2

341,342 Paper and products and printing and publishing 5 2

352 Other chemicals 6 3

355 Rubber products 6 3

356 Plastic products 6 3

361 Pottery, china, earthenware 7 3

362 Glass and products 7 3

369 Other non-metallic mineral products 7 3

371 Iron and steel 8 4

381 Fabricated metal products 8 4

383 Machinery, electric 9 4

384 Transport equipment 10 4

400 Non-traded sector
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