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1 Introduction

Modern economic growth theory emphasizes technological progress as the engine of growth. In this

paper, we study how a country’s patent-issuing policy can affect innovation and economic growth.

When there are competing claimants to the same innovation, the patent goes to the one who

filed a patent application first. While this simple first-to-file rule is the norm everywhere in the

world today, it was not so in the United States before the enactment of the 2012 America-Invents

Act. Earlier, the U.S. had instead adhered to an alternative first-to-invent rule, by which it granted

the patent to the one who claimed to have discovered the innovation first. Previous attempts to

switch to a first-to-file rule had been met with strong opposition. Opponents had argued that a

switchover would prove detrimental to America’s inventiveness, adducing the fact that the U.S. had

led the world in invention for more than a century thanks to the first-to-invent feature of its patent

law in effect since 1836. This argument, if valid, implies that the world economy is in the “wrong”

patent regime. The objective of this paper is to investigate which of the two rules generates faster

economic growth.

The question of which rule is more conducive to innovation was first investigated by Scotchmer

and Green (1990) in a non-growth context. They considered a two-stage R&D race between two

firms, in which firms must discover the intermediate and the final innovation successively to bring a

new product to market. They argued that a firm is more likely to patent the intermediate innovation

under a first-to-file rule lest it be claimed by the rival who discovers it later. A patent puts the

intermediate innovation in the public domain and makes the second-stage competition a two-firm

race. Since two firms can make a discovery faster than one, it was concluded that first-to-file is more

conducive to innovation than first-to-invent.

The Scotchmer-Green result, however, proves to be sensitive to the key assumptions of the model.

Miyagiwa and Ohno (2015) found that their result can be reversed when innovation probabilities

depend on firms’ R&D efforts. In a different setting, Miyagiwa (2015) showed that a reversal can

also occur when a firm remains ignorant of a rival’s discovery unless it is patented.

All these works focused on innovation of a single product in partial-equilibrium settings. Al-

though the approach generates interesting insights, it is not certain whether partial-equilibrium

analyses can correctly predict the effects on economic growth, an inherently aggregate phenomenon.

Furthermore, opponents in the U.S. seem to have been more concerned with the long-run effect of
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adopting a first-to-file rule. The objective of this paper is thus to examine the effect of patent-issuing

rules on economic growth in a general equilibrium model.

To model economic growth, we draw on Romer (1990) and consider an economy with three

sectors. The R&D sector invents blueprints for intermediate goods. The intermediate-goods sector

buys the blueprints to produce specialized intermediate goods under monopolistic competition. The

final good sector turns all the existing intermediate goods into a single consumption good. Labor,

the only factor of production, is employed in the R&D sector and the intermediate goods sector.

The economy grows as new varieties of intermediate goods are created. The steady-state growth

rates are computed and compared under the first-to-file and the first-to-invent rule.

Although the basic setup is standard, our analysis has two novel features. The first and foremost

is in the R&D sector. Here, we remain as close as possible to the Scotchmer-Green setup. Namely,

we assume the following.

1. Two firms engage in two-stage R&D for the invention of each intermediate good.

2. R&D is sequential; to invent a blueprint for each intermediate good, firms must discover the

first-stage innovation before proceeding to the second stage of R&D.

3. Innovation probabilities are exogenous.

4. The first-stage innovation and the second-stage innovation are independently patentable.

5. Information is complete, i.e. when a firm has discovered the first-stage innovation, the rival

knows it, but does not learn its content unless it is patented.

These assumptions ensure that the Scotchmer-Green result is not reversed by other factors noted in

the precursory studies, and allow us to zero in on the general-equilibrium growth-theoretic aspects

of the patent-issuing rules.

The second novel feature of our model is the introduction of asymmetry in the invention of

intermediate goods across industries. While asymmetry can be introduced in a number of ways,

we focus on the R&D cost asymmetry. In such a setting, the two patent-issuing rules affect each

industry’s incentive to patent the first-stage innovations differently, generating a differential impact

on resource allocation and economic growth.

Our analysis proceeds in two steps. We first extend the Scotchmer-Green model to a continuum

of industries with asymmetric R&D costs. It is still a partial-equilibrium model because the profits
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and wages are taken as given. In this “basic” model, first-to-file induces faster growth in product

development than first-to-invent. This is the growth-theoretic version of the Scotchmer-Green result.

The second step of our analysis extends the basic model to a general-equilibrium framework,

where intertemporal utility maximization and intersectoral labor mobility jointly determine con-

sumer expenditure and profits (the prize for innovation) in terms of the wage, the numeraire.

In contrast to the partial equilibrium model, the general equilibrium model gives rise to several

possible cases to analyze. To select a most plausible and data-consistent equilibrium, we restrict

our attention to cases in which a more patient economy grows faster. This criterion is intuitive,

empirically supported (e.g., Dohmen (2016) and Hübner, M. and G. Vannoorenberghe (2015)), and

widely observed in the standard endogenous growth models (e.g., Romer (1990) and Lucas (1998)).

Under this equilibrium-selection criterion, our analysis shows that first-to-invent promotes faster

economic growth than first-to-file, reversing the partial-equilibrium result. The reversal occurs for

the following reason. First, in general equilibrium, profits are lower in first-to-invent than in first-

to-file. Second, lower profits make patenting more attractive, inducing more industries to patent

innovations. Third, patents disclose information and lead to faster economic growth. The analysis

below explains these linkages in detail.

We now discuss this paper’s main contributions in light of relevant literature. They are twofold.

One is to the line of research in the industrial-organization literature. The works cited earlier examine

which patent system is more conducive to innovation of a single product, but leave unanswered the

question of which patent system promotes faster economic growth in an aggregate economy. Thus,

this paper is a natural extension of the precursory studies of innovation to a multi-industry model.

Our second contribution is to the literature on economic growth theory. Romer (1990) and

Aghion and Howitt (1992) pioneered in developing the growth models based on expanding product

variety and rising product quality, respectively. Grossman and Helpman (1991) applied these two

approaches to international trade models. These seminal works have spawned much research on

the linkages among growth, innovation, and trade. Importantly, the above models have offered a

tractable framework in which the effect of patent policy can be examined. For example, the effects

of a stronger patent protection can be studied, and optimal patent length can be characterized

(e.g., Grossman and Lai (2004)). However, this body of literature assumes one-stage R&D, that is,

a patent is immediately granted once a single innovation occurs. Thus, the mechanisms through
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which firms’ strategic patenting affects long-run growth remains unexplored.1 Our paper fills this

lacuna. We believe this to be a particularly important contribution of the present paper because

patents are widely considered a key policy tool to promote long-run economic growth.

Turning to empirical studies on the issue of first-to-file versus first-to-invent, there is only a scanty

literature. Lo and Sutthiphisal (2009) used Canada’s 1989 decision to switch from first-to-invent

to first-to-file as a natural experiment and found that the switchover failed to stimulate Canadian

R&D efforts. Abrams and Wagner (2012), also using Canadian data, discovered significant drops in

patent applications from individual and small-scale corporate inventors. These results are consistent

with our key result that first-to-file is less conducive to technical progress relative to first-to-invent.

The remainder of the paper is organized in 5 sections. Section 2 describes the R&D sector,

which is the core of the model. The section finds what induces firms to patent innovations in first-

to-file and first-to-invent. Section 3 compares the growth rates under the two patent regimes in a

partial equilibrium setting where the prize for innovation is exogenously given. Section 4 extends

the analysis of section 3 to general equilibrium. It is demonstrated that the Scotchmer-Green result

is reversed once the prize of innovation is endogenously determined. Section 5 concludes.

2 The R&D Sector

We begin with the R&D sector, which is the most salient component of our model. The production

sectors and the growth mechanism will be taken up in the next section.

Assume a unit mass of intermediate-goods industries indexed by j 2 [0, 1]. Industry j produces

nj(t) varieties of differentiated intermediate goods at time t. R&D is conducted in all industries

with the same key characteristics as in the Scotchmer-Green model. First, a blueprint for each

intermediate good is developed through two-stage R&D competition between two rival R&D firms.

The first-stage innovation is labeled by A and the second-stage innovation by B. Second, R&D is

sequential. To create a complete blueprint for a new variety, firms must first discover A and then

B. Third, R&D is stochastic; A is discovered with hazard rate ↵ and B with hazard rate �. These

hazard rates are exogenous and common in all industries.2 Fourth, both innovations, A and B, are

separately patentable. Fifth, patents do not expire, as in Romer (1990).3 As commented in the
1A closest study to ours is Cozzi and Galli (2014) who develop a two-stage R&D model, interpreting each stage

as basic and applied research. Crucially, however, they do not consider strategic interactions between firms as they
assume “many” firms through free entry.

2Scotchmer and Green (1990) assume identical hazard rates for two innovations.
3This is also implicit in Scotchmer and Green (1990).

5



Introduction, these assumptions ensure that no other factors but the general equilibrium effect can

reverse the Scotchmer-Green result. Finally, we assume that discoveries of A and B in industry j

require flow R&D costs cA(j) and cB(j), respectively, in terms of labor units and that these R&D

cost differ across industries. This last assumption is the key to our analysis, as asymmetric R&D

costs induce industries to respond differently to patent law changes and impact allocation of labor

between the R&D and the production sector.

Let ⇧ denote the total “prize” of two-stage R&D competition, i.e., the discounted sum of all

future flow profits arising from the production of a new variety. ⇧ is an exogenous parameter in

the basic model of Section 3, but will be endogenized in the general equilibrium model of Section

4. Given separate patentability, it is possible that A and B are owned by different R&D firms. In

such cases, it is assumed that the owner of A receives the share � of ⇧ while the remaining share

1 � � goes to the owner of B. We treat � 2 (0, 1) as a parameter common to all blueprints in all

industries.4

The “leader” is the firm that discovers A first; the other firm is the “follower.” The main focus of

our analysis is on whether or not the leader patents A. In either patent system, the leader secures

the profit �⇧ by patenting A. By contrast, the consequence of not patenting A depends on the

patent system in effect. In first-to-file, the leader runs the risk of losing the exclusive right to A if

the follower discovers and patent A later. In first-to-invent, this risk is minimal because the leader

can always establish priority of invention. This difference gives rise to different incentives to patent

A under the two patent-issuing rules.

2.1 First-to-File

We begin with the first-to-file rule. Fix an industry j 2 [0, 1]. Suppose that at time t one firm

(the leader) discovers A. Figure 1 shows the strategic moves and timing of the subgame played out

following the discovery of A. At node DL the leader chooses between P (= patenting A) and N

(= not patenting A). Let V P
F (j) and V N

F (j) denote the payoff to the leader, respectively, when

she chooses P and when she chooses N (the subscript F indicates the first-to-file rule is under

consideration). If she chooses P , the follower skips stage 1 and play moves to node 1, where two
4Asymmetry can be introduced into our analysis by distinguishing and ranking industries in terms of the profit-

sharing parameter �j instead of the R&D costs. The results are similar, so this alternative approach is not pursued
here.
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firms compete in stage 2. Thus, V P
F (j) satisfies the following asset-value equation:5

⇢V P
F = �(⇧� V P

F ) + �(�⇧� V P
F )� cB(j). (1)

The right-hand side has the following interpretation. The leader spends flow R&D cost cB(j) per

unit of time and wins the second-stage race with probability �, causing her asset value to change

from V P
F to ⇧ as shown in the first term.6 At the same time, however, the leader could lose the

race with probability �, in which case her asset value changes as indicated by the second term.

Thus, the right-hand side of (1) represents the flow net benefit to the leader of patenting A at node

DL. In equilibrium, that benefit equals ⇢V P
F , where ⇢ is the rate of interest.7 Collecting terms and

rearranging yields

V P
F (j) =

� (1 + �)⇧� cB (j)

⇢+ 2�
.

Next, suppose that the leader chooses not to patent A at node DL. Then, play moves to node

2 in Figure 1, where an “asymmetric” R&D competition starts, with the leader in stage 2 and the

follower in stage 1. If the leader wins this race, the game is over. If instead the follower wins the

race, play moves down to node DF in Figure 1, where the follower has the option of patenting A.

We claim that the follower always patents A because there is no reason for secrecy when the leader

already has A.8

With the follower patenting A, a stage-two race starts at node 3. This stage-two race differs

from the one at node 1 in that the leader does not hold the patent for A. Thus, the leader receives

(1 � �)⇧ if she wins, and nothing if she loses. By the procedure similar to the one that led to

equation (1), we can write the expected profit to the leader at node 3 as

V NP
F (j) =

� (1� �)⇧� cB (j)

⇢+ 2�
.

Now, returning to node DL, we can calculate the value of not patenting A, V N
F (j), to the leader

as follows. By not patenting A, the leader initiates the asymmetric race described above at node

2. With probability � the leader wins the race, changing her asset value from V N
F (j) to ⇧. On the

5A capital gain/loss term is suppressed to simplify exposition. It will be explicitly introduced in Section 4 where
the basic model is extended to a general equilibrium framework.

6More accurately, probability ��, where � is an infinitesimally short time.
7In the general equilibrium model of Section 4, we use ⇢ to denote consumer’s rate of time preference. In fact, (1)

is equivalent to the steady state version of the asset equation in general equilibrium.
8It is readily shown that at node DF patenting A is the dominant strategy for the follower.
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other hand, with probability ↵, the leader loses the race, causing her asset value to change from

V N
F (j) to V NP

F (j). Thus, V N
F (j) satisfies the following asset-value equation:

⇢V N
F (j) = �

�
⇧� V N

F (j)
�
+ ↵

�
V NP
F (j)� V N

F (j)
�
� cB (j) .

Collecting terms yields

V N
F (j) =

�⇧+ ↵V NP
F (j)� cB (j)

⇢+ ↵+ �
.

Now we state the leader’s decision rule at node DL; the leader chooses to patent A if and only

if V P
F (j) � V N

F (j). Substituting and simplifying, we restate this condition in

Lemma 1. In first-to-file, the leader patents A if and only if

cB (j)� [(1� �)� � � (⇢+ 2↵)]⇧ � 0. (2)

We now make three assumptions concerning the condition in Lemma 1.

Assumption 1. cB(j) is differentiable on (0, 1) and c0B (j) > 0.9

Assumption 2. (1� �)� � � (⇢+ 2↵) > 0.

Assumption 3. (i) cB (0) < [(1� �)� � � (⇢+ 2↵)]⇧, and (ii) cB (1) > [(1� �)� � �⇢]⇧.

Assumption 1 is without loss of generality and says that industries can be ordered in terms of

R&D costs for B. Differentiability simplifies the analysis. Assumptions 2 and 3 ensure that A is

patented in some industries but not in others.10

Assumptions 1 - 3 imply the following:

Lemma 2. In first-to-file, there exists JF given by

cB (JF ) = [(1� �)� � � (⇢+ 2↵)]⇧ (TH0
F )

such that the leader patents A only in industries j 2 [JF , 1]

Several comparative-static results follow immediately from Lemma 2.
9We do not make a similar assumption regarding cA (j). Therefore, the analysis that follows in this section does

not depend on how cA (j) changes in j.
10Assumption 3(ii) can be replaced with c (1) > [(1� �)B � � (⇢+ 2A)]⇧. But, as we will see, (ii) is required for

an interior equilibrium in first-to-invent.
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Lemma 3. The threshold industry JF increases in ⇧ and �, and decreases in ↵, ⇢ and �.

Intuitions for the lemma are given below:

1. An increase in the prize of innovation ⇧ discourages patenting (raises JF ). This comes from

Assumptions 1 and 2. Intuitively, not patenting A prolongs the second-stage R&D, raising

the R&D costs. Thus, the decision not to patent A is justified only if the innovation prize is

greater. This means that as the prize increases, the leader has less of an incentive to patent

A, raising JF . This result plays an important role in understanding why the Scotchmer-Green

result can be reversed in the general equilibrium model in Section 4.

2. An exogenous increase in hazard rate ↵ encourages patenting (lowers JF ). When ↵ is higher,

the follower is more likely to catch up, if the leader does not patent A. This makes patenting

more attractive to the leader.

3. An exogenous increase in hazard rate � discourages patenting (raises JF ). With a higher �,

the leader is more likely to win an asymmetric race (at node 2 in Figure 1), which makes

non-patenting more attractive to the leader.

4. An increase in the interest rate ⇢ encourages patenting (lowers JF ). As explained earlier, not

patenting A prolongs stage 2, costing extra R&D expenditure for the leader. A higher interest

rate ⇢ raises the R&D cost even more, prompting patenting in more industries.

5. An increase in the share � of ⇧ leads to more patenting (lowers JF ). A higher � means a

lower (1� �). This reduces the expected payoff to the leader from non-patenting, and makes

patenting more attractive.

2.2 First-to-Invent

We now turn to first-to-invent. The treatment of first-to-invent requires two modifications in Figure

1. First, the payoff box at node 4 changes as indicated in the figure. Second, node 3 becomes

irrelevant because the follower cannot patent A.11

We begin, as before, with the leader’s patent decision at node DL. When the leader patents

A, the consequence is the same as in first-to-file, namely, the leader’s payoff V P
I (j) is identical to

11It is assumed that, when the follower files for a patent, the leader blocks it by establishing priority of invention
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V P
F (j);

V P
I (j) = V P

F (j) .

(The subscript I denotes the first-to-invent rule.) If the leader chooses not to patent A, an asymmetric

race commences at node 2. The expected profit to the leader, V N
I (j), satisfies

⇢V N
I (j) = �

�
⇧� V N

I (j)
�
+ ↵

�
V NP
I (j)� V N

I (j)
�
� cB (j) .

To interpret this equation, note that the leader wins this race with probability �, obtaining the

entire prize ⇧. The leader can lose the race with probability ↵, turning her asset value from V N
I (j)

to V NP
I (j). The latter denotes the value to the leader of the asymmetric race for B that commences

when the follower catches up. Collecting terms yields

V N
I (j) =

�⇧+ ↵V NP
I (j)� cB (j)

⇢+ ↵+ �
.

This is the value to the leader of not patenting A at node DL in first-to-invent. This expression is

identical to its counterpart in first-to-file, except that V NP
I (j) replaces V NP

F (j). Both these terms

represent the value to the leader of the second-stage race commenced when the follower discovers

A, but there is a crucial difference. In first-to-file, the follower owns the patent for A, while in

first-to-invent the leader owns it due to priority of invention. Thus, the stage-two race at node DF

in first-to-invent is identical to the one at node DL in first-to-file, that is,

V NP
I (j) =

�(1 + �)⇧� cB (j)

⇢+ 2�
= V P

F (j).

It is easy to show that V NP
I (j) > V NP

F (j), meaning that, given ⇧, the leader has a greater incentive

not to patent A in first-to-invent than in first-to-file.

We are now in a position to state the leader’s decision rule at node DL. The leader patents A if

and only if V P
I (j) � V NP

I (j). Substituting yields

Lemma 4. In first-to-invent, the leader patents innovation A if and only if

cB (j)� [� (1� �)� ⇢�]⇧ � 0. (3)

Assumptions 1 - 3 imply the following.
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Lemma 5. In first-to-invent, there exists JI satisfying

cB (JI) = [(1� �)� � �⇢]⇧. (TH0
I )

such that the leader patents A in j 2 [JI , 1].

Lemma 5 shows that an exogenous change in hazard rate ↵ has no effect on the leader’s incentive

to patent A (i.e., JI is independent of the hazard ↵). In first-to-invent, the leader owns A, whether

she patents it or not. Therefore, the follower’s success rate ↵ cannot affect the leader’s patent

decision. This contrasts with the first-to-file case. The other parameters (�, ⇧, ⇢ and �) have

qualitatively identical effects on the patent decision as in first-to-file and the intuitions are basically

the same as before. For later use, we note the following.

Lemma 6. Both in first-to-file and in first-to-invent, a fall in ⇧ encourages patenting, and increases

the proportion of patenting industries (i.e., lowers the threshold J).12

We call this result the prize effect. In the general equilibrium model of section 4, we discuss how

⇧ links the R&D sector to the rest of the economy and how the prize effect holds the key to the

intuitive understanding of the general equilibrium effect of patent policy.

2.3 Three Effects

The next result follows straightforwardly from Lemmas 1-6.

Proposition 1. Given ⇧, more industries patent A in first-to-file than in first-to-invent (i.e., JF <

JI).

This result is illustrated in Figure 2. The graphs (TH0
F ) and (TH0

I ) represent the functions

given by the left-hand side of (2) and (3), respectively. Both graphs are upward-sloping because

cB(J) is increasing by Assumption 1. By Lemmas 2 and 5, these functions take the value of 0 at the

threshold industries JF and JI . A comparison between (2) and (3) puts the graph of (TH0
F ) above

that of (TH0
I ) as in Figure 2. Proposition 1 follows immediately.

An intuition can be gained by identifying three effects of (not) patenting. First, not patenting

A is risky in first-to-file because the follower can catch up and patent it. Hence, the leader is more

likely to patent A in first-to-file. We call it the risk-elimination effect. This effect is absent in
12The intuition is given following Lemma 3.
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first-to-invent. Second, patenting allows the follower to bypass stage 1. Since two firms can discover

B faster than one, the leader receives the prize (or her share of it) sooner when she patents A. We

call it the expedition effect. This effect is present in both patent systems. On the other hand, not

patenting A makes the follower invent A, giving the leader a head start in the stage-two race. We

call it the detour effect.

It should now be clear that the risk-elimination effect explains why the leader is more likely to

patent A in first-to-file than in first-to-invent, for a given ⇧. The expedition effect, on the other

hand, explains why the two curves are upward sloping in Figure 2. If a flow R&D cost cB (j)

increases, the leader has a greater incentive to end stage 2 sooner. But stage 2 ends sooner if two

firms compete (this is the expedition effect). Thus, the leader has a greater incentive to patent A in

industries with higher flow costs cB (j). This and Assumption 1 imply that the (TH0
F ) and (TH0

I )

are upward-sloping.

3 Partial Equilibrium

3.1 The Production Sectors

Having described the R&D sector and the strategic decisions of R&D firms, we turn to the production

sectors. As in Romer (1990), the economy has two production sectors. The intermediate-goods sector

consists of a continuum of industries j 2 [0, 1], and industry j uses labor to produce nj(t) varieties

of intermediate goods at time t. The final good sector turns out Y (t) units of the final good from

the whole gamut of existing intermediate goods according to the production function:

Y (t) =

 Z 1

0

Z nj(t)

0
xij(t)

✓didj

! 1
✓

(4)

where ✓ 2 (0, 1) is a parameter and xij(t) is the flow of output of an intermediate good produced by

firm i in industry j at time t.13 Note that labor is not used in the production of the final good.

Perfect competition prevails in the final good sector. Profit maximization yields the following

demand for each intermediate good:
13As is known, it is possible to interpret this production function as the Dixit-Stiglitz love-of-variety utility function,

implying that consumers directly consume xij(t) units of variety i produced in industry j.
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xij (t) =
pij (t)

� ✓
1�✓

Z 1

0

Z nj(t)

0
pi0j0 (t)

� ✓
1�✓ di0dj0

· E (t)

pij (t)
(5)

where pij (t) denotes the price of the intermediate good i in industry j and E (t) is consumption

expenditure.14 Facing this demand function, each intermediate good firm produces a differentiated

product with labor under the patented technology developed in the R&D sector. If each labor unit

produces one unit of intermediate-good output, the standard mark-up rule yields pij = p = 1/✓.15

Substituting this price simplifies the above demand function to:

xij (t) ⌘ x (t) =
E (t)

N (t) p (t)
8 i, j, (6)

where

N (t) ⌘
Z 1

0
nj (t) dj (7)

is the total number of varieties available at time t. Substituting these results into (4), we can write

Y (t) = x (t)N (t)
1�✓
✓

Given x, the growth rate is given by

Ẏ (t)

Y (t)
=

1� ✓

✓
g (t) where g (t) =

Ṅ (t)

N (t)
. (8)

This shows that economic growth is driven by increasing varieties.

To link the R&D sector to the growth process, we assume the following. (i) In each sector j, the

completion of one round of two-stage R&D is immediately followed by a new round of R&D compe-

tition with two new R&D firms. This sequence continues infinitely in time.16 (ii) The completion

of each round of R&D competition in industry j generates �N new varieties in that industry. This

assumption (0 < � < 1) captures positive externality in R&D in a simple and convenient way in the

present framework. We show shortly that, with identical Poisson rates ↵ and � in all industries,
14A more precise definition of E (t) will be given in Section 4.
15Here, the wage is set equal to one in anticipation of the general-equilibrium model of Section 4, in which it serves

as the numeraire.
16We can introduce an entry cost to be incurred at the beginning of a two-stage patent race. It is assumed to be

zero, because the entry cost does not affect our key results.
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growth depends crucially on the number of industries in which A is patented.

Before proceeding further, we substitute (6) to express the flow profit for each intermediate good

as:

⇡ (t) = (1� ✓)
E (t)

N (t)
. (9)

Since one round of a two-stage patent race generates �N (t) number of new varieties, a total flow

profit in an intermediate-goods industry j equals �N (t)⇡ (t). With permanent patents, the total

prize of a patent race is equivalent to the discounted sum of �N (t)⇡ (t) over an infinite time horizon.

Let this sum be denoted by ⇧. In the remainder of this section we take ⇧ as given. In Section 4 we

determine its value endogenously in general equilibrium.17

3.2 Steady State

The analysis of this subsection applies equally to first-to-file and first-to-invent. Since innovations

occur stochastically, a given industry j is randomly “located” at one of the numbered nodes in Figure

1. For example, in industry j 2 [J, 1], J = JF , JI , where the leader always patents A, firms are

either in stage 1 or 2. Thus, the patenting industry randomly changes its location between nodes 0

and 1.

Let AA and BB denote the state in which both firms are in stage 1 and stage 2, respectively,

and let ZP
AA and ZP

BB be the number of patenting industries in states AA and BB. Since there are

1� J patenting industries in the economy, we have18

ZP
AA + ZP

BB = 1� J, J = JF , JI . (10)

Industries in state AA discover A with the combined hazard rate of 2↵ and move to state BB.

That is, 2↵ZP
AA industries move from state AA to state BB, as described in Figure 3(a). Similarly,

2�ZP
BB industries move from BB to AA, as one round of R&D is completed and a fresh round starts.

In steady state, ZP
AA and ZP

BB must be constant, i.e.,

2�ZP
BB = 2↵ZP

AA.

17Since �N (t)⇡ (t) = (1� ✓)E (t), fixing ⇧ is equivalent to fixing consumption expenditure E (t).
18The subscripts F and I are dropped from Z’s unless ambiguity arises.
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This and (10) can be used to calculate the steady-state values of industry shares:

ZP
AA

1� J
=

�

↵+ �
,

ZP
BB

1� J
=

↵

↵+ �
, J = JF,JI . (11)

Turn next to the non-patenting industries j 2 [0, J), J = JF , JI . Such industries can be in

three states: AA, BB, and AB, the last of which indicates the asymmetric race in which the leader

is in stage 2 and the follower is in stage 1. Thus, non-patenting industries randomly change their

locations among three nodes: 0, 2 and 3 in first-to-file and 0, 2 and 4 in first-to-invent. Let ZN
AA,

ZN
BB and ZN

AB denote the number of industries in each state. To calculate these values, note that

there are J non-patenting industries in the economy, and hence

J = ZN
AA + ZN

BB + ZN
AB, J = JF,JI . (12)

Further, industries in AB move to BB with rate ↵ and to AA with rate �, as shown in Figure 3(b).

The number of industries in each state is constant in steady state, implying

2↵ZN
AA = 2�ZN

BB + �ZN
AB,

2�ZN
BB = ↵ZN

AB.

The above three equations yield

ZN
AA

J
=

(↵+ �)�

↵� + (↵+ �)2
,

ZN
BB

J
=

↵2

↵� + (↵+ �)2
,

ZN
AB

J
=

2↵�

↵� + (↵+ �)2
, (13)

where J = JF , JI . Note that

zPk ⌘
ZP
k

1� J
, k = AA,BB

zNk ⌘
ZN
k

J
, k = AA,BB,AB

9
>=

>;
J = JF , JI (14)

can be interpreted as the conditional probability that a given industry is in one of the possible

states. This interpretation is valid, irrespective of the patent-issuing rule in effect. For example,

(11) implies that a patenting industry is in state AA with probability zPAA = �/ (↵+ �).
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3.3 Rate of Technical Progress

Recall that each round of R&D competition in industry j creates �N varieties of intermediate goods

in that industry. This occurs every time one round of R&D competition is completed and an industry

returns to state AA. In a patenting industry, this occurs with Poisson rate 2� as shown in Figure

3(a). In a non-patenting industry, state AA is reached either from state BB or from state AB as in

Figure 3(b). The former case occurs with Poisson rate 2�, and the latter with Poisson rate �. These

observations imply that the total number of intermediate products N(t), defined in (7), increases

according to

Ṅ (t) = �N
�
2�ZN

BB + �ZN
AB

�
+ �N2�ZP

BB. (15)

Then, (11), (13) and (15) can be used to calculate the rate of technical progress

Ṅ (t)

N (t)
⌘ g = 2�

↵�

↵+ �

✓
1� ↵�

↵� + (↵+ �)2
J

◆
, J = JF , JI . (TP )

This equation shows that an increase in J slows economic growth. This has an intuitive expla-

nation. A higher J implies more non-patenting industries. In non-patenting industries, inventing

new blueprints takes a longer time on average because the follower has to “reinvent the wheel” (i.e.,

innovate A) in more industries. Thus, as J increases, the R&D sector invents fewer new varieties

per unit of time, and consequently the economy grows more slowly.

3.4 Equilibrium

In the present partial-equilibrium model, endogenous variables are J 2 {JF , JI} and g. In the first-

to-file system, (JF , gF ) are determined by (TH0
F ) and (TP ). In the first-to-invent system, (JI , gI)

are defined by (TH0
I ) and (TP ). In either case, the model can be solved recursively. (TH0

F ) and

(TH0
I ) first determine JF and JI , respectively and then (TP ) maps them to gF and gI . This, by

Proposition 1, leads to

Proposition 2. For given ⇧, gF > gI ; growth rate g is higher in first-to-file than in first-to-invent.

The proposition confirms that the Scotchmer-Green result can be extended into a growth context

in our basic model, where ⇧ is exogenous. The reason for the result lies in the risk-elimination effect

of patenting (identified in Section 2.3), which is present in first-to-file but not in first-to-invent. The

next section will demonstrate that the prize effect in Lemma 6, which emerges in general equilibrium
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settings, works against the risk-elimination effect, so that the result in Proposition 2 can be reversed.

4 General Equilibrium

In this section, we extend the preceding partial-equilibrium model to general-equilibrium settings.

We do so by introducing consumers’ utility maximization and the labor market, which endogenizes

the prize of a patent race ⇧. We focus on steady state as before.

4.1 Consumers and Profits

We begin with consumers’ decision-making. Assume that there are L identical consumers. Each con-

sumer supplies a single unit of labor inelastically and has preferences over the final good represented

by the utility function

U =

Z 1

0
e�⇢t lnC(t)dt.

Note that ⇢ now denotes the representative consumer’s rate of time preference. In equilibrium,

demand C (t) for the final good equals its supply Y (t). The intertemporal optimization results in

the Euler condition:
Ė (t)

E (t)
= r (t)� ⇢ (16)

where E(t) is the total expenditure and r(t) is the instantaneous rate of interest at time t.

In Section 3, we showed that profit per variety ⇡ (t) is given by (9), and that a total flow profit

�N (t)⇡ (t) is generated from each round of two-stage R&D competition. We now define the prize

of a patent race ⇧ as the discounted sum of such flow profits over an infinite time horizon;

⇧ (t) =

Z 1

t
e�

R ⌧
t r(s)ds�N (⌧)⇡ (⌧) d⌧ =

� (1� ✓)

⇢
E (t) . (17)

The second equality in (17) makes use of (16) with Ė (t) = 0. Using (17), we can rewrite the

threshold conditions (TH0
F ) and (TH0

I ) as

cB (JF ) = [(1� �)� � � (⇢+ 2↵)]
� (1� ✓)

⇢
E, (THF )

cB (JI) = [(1� �)� � �⇢]
� (1� ✓)

⇢
E. (THI)
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4.2 The Values of R&D Firms

In describing the R&D sector in Section 2, we deliberately ignored the term capturing capital

gains/losses in the asset equations of R&D firms. It was an innocuous shortcut to ease the exposition

of the model. In this section, we explicitly take into account the fact that the value of R&D firms

changes as the economy grows.

First, let us consider the leader in a patenting industry j under the first-to-file system. Its value,

defined in (1) in the partial equilibrium model, is now given by

r (t)V P
F (t) = �cB(j) +B(⇧ (t)� V P

F (t)) +B(�⇧ (t)� V P
F (t)) + V̇ P

F (t) (18)

where the last term represents a capital gain/loss. Note that we have Ėt = V̇ P
F = 0 in steady state,

given that wage is the numeraire. Using (16), therefore, (18) is reduced to (1). By the same logic,

one can show that the value functions used in the partial equilibrium model are all valid for this

extended model. Using (17), we can now rewrite the threshold conditions (TH0
F ) and (TH0

I ) as

cB (JF ) = [(1� �)� � � (⇢+ 2↵)]
� (1� ✓)

⇢
E, (THF )

cB (JI) = [(1� �)� � �⇢]
� (1� ✓)

⇢
E. (THI)

4.3 Labor Market

To close the model, we introduce the labor market. In equilibrium, the total supply of labor L is

allocated between the R&D sector (LR) and the intermediate goods sector (LM ). Since each unit

of labor produces one unit of an intermediate good, the total demand for labor in the intermediate-

goods sector is given by

LM (t) =

Z 1

0

Z n(j)

0
xij (t) didj = ✓E (t) ,

where the second equality follows from (5). Naturally, an increase in E raises labor demand in

manufacture.

To calculate the demand for labor in the R&D sector, recall that cA(j) and cB(j) denote the

number of workers employed in stage 1 and stage 2 in industry j, respectively. Let us first consider a

patenting industry j 2 [J, 1], J = JF , JI . We showed already that, in steady state, zPAA and zPBB are
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the probability that industry j is in states AA and BB, respectively. Therefore, the total number

of R&D workers in industry j is 2cA (j) zPAA + 2cB (j) zPBB. Making use of this, we can compute the

number of R&D workers in the patenting industries:

Z 1

J

�
2cA (j) zPAA + 2cB (j) zPBB

�
dj. (19)

An analogous procedure shows that there are 2cA (j) zNAA+2cB (j) zNBB +(cA (j) + cB (j)) zNAB R&D

workers in a non-patenting industry j 2 [0, J), J = JF , JI . The first two terms arise from symmetric

states AA and BB, while the third represents the labor demand in asymmetric state AB. Thus, the

total amount of R&D labor employed in non-patenting industries equals

Z J

0

⇥
2cA (j) zNAA + 2cB (j) zNBB + (cA (j) + cB (j)) zNAB

⇤
dj. (20)

Combining (19) and (20), we can show, after much algebra, that the total number of workers in the

R&D sector, LR, equals

LR (t) = �̄+ � (J) , J = JF , JI

where

�̄ ⌘ 2

↵+ �

✓
�

Z 1

0
cA (j) dj + ↵

Z 1

0
cB (j) dj

◆
> 0

� (J) ⌘ 2↵2�⇣
↵� + (↵+ �)2

⌘
(↵+ �)

Z J

0
[cA (j)� cB (j)] dj.

Note that �̄ is independent of J but that � (J) depends on J , leading to

Lemma 7. In general equilibrium, an increase in J (= JF , JI) decreases demand for R&D labor if

and only if cA (j) < cB (j).

To understand Lemma 7 intuitively, consider the following ratios constructed from (11) and (13):

zPBB

zPAA

=
↵

�

zNBB + zNAB/2

zNAA + zNAB/2
=

↵

�
· ↵+ �

2↵+ �
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These ratios indicate the relative probabilities that a firm is in stage 2 of R&D competition (relative

to stage 1) in a patenting and a non-patenting industry, respectively. Computation shows that the

former ratio exceeds the latter, meaning that a patenting industry is more likely to be in stage 2

than a non-patenting industry. Thus, if cA (j) < cB (j), a patenting industry employs more labor

for R&D on average than a non-patenting industry, and hence an increase in J (which increases the

number of non-patenting industries) reduces demand for R&D labor.

The labor market clears if L = LM + LR, that is,

L = ✓E + �̄+ � (J) , J = JF , JI . (LM)

(LM) shows that the relationship between consumer expenditure and the demand for R&D labor

depends on how � (J) changes in J (see Lemma 7).

4.4 Steady State Equilibrium

The following result defines a steady state equilibrium of the general equilibrium model.

Proposition 3. In steady state, the equilibrium growth rate in the first-to-file system is determined

by (THF ), (TP) and (LM), and it is derived from (THI), (TP) and (LM) for the first-to-invent

rule.

These are the key functions in our analysis. First, (17) maps E positively to ⇧. Then, (THF ) and

(THI) relate ⇧ positively to J by Lemma 5. Finally, (TP ) relates J (= JF , JI) negatively to g. The

reason for the negative relationship between J (= JF , JI) and g is familiar by now; non-patenting

industries take longer times to complete each round of R&D, and hence an increase in the share of

non-patenting industries in the economy (an increase in J) slows economic growth. Therefore, these

functions together imply that an increase in E is negatively related to economic growth.19

Since labor market-clearing requires that E and J satisfy condition (LM), the (LM) function

and the (THk) functions (k = F, I) jointly determine the equilibrium J (= JF , JI) and E. The

(THk) functions defines a positive relationship between E and J , while the relationship defined by

the (LM) function can be positive or negative. As we will see shortly, how the (LM) function relates

E to J holds the key to understanding the nature of steady state equilibrium.
19(17) shows that ⇧ (hence profit) is a positively linear function of expenditure E, meaning that profit and growth

are negatively related. This is consistent with the result of Aghion, et al. (2005) that there is an inverted U relationship
between competition and growth, implying that higher profit can discourage growth.
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4.4.1 Unique Interior Equilibrium

In this subsection we consider three cases in which there is a unique interior equilibrium. Multiple

interior equilibria are discussed in the following subsection.

Lemma 7 implies that interindustry R&D cost differences are crucial in understanding the nature

of steady state equilibrium. Let us begin with the case of cA (j) = cB (j) for all j 2 [0, 1]. This special

case is depicted in Figure 4. The discussion above implies that the (LM) function is independent of

J , so it is represented by the vertical line in Figure 4. Therefore, the (LM) equation alone determines

the equilibrium E uniquely. From the preceding discussion, the (THF ) and (THI) curves are both

upward sloping as shown in the figure. The intersections of these functions with the (LM) curve

determine the equilibrium JI and JF . Now, Proposition 1 states that JI > JF for a given ⇧ and

hence E, implying that the (THF ) curve lies above the (THI) curve, as in Figure 4. Thus, JI > JF

implies that gI < gF in steady state equilibrium. The vertical (LM) function in Figure 4 implies that

patent law changes generate no general equilibrium effect. Therefore, the present case is essentially

equivalent to the partial equilibrium model of Section 3. Note that this result is driven solely by the

risk-elimination effect of patenting, identified in Section 2.3. The prize effect identified in Lemma 6

is absent because E (hence ⇧) is the same for both patenting systems. A reversal of the Scotchmer-

Green result is possible only when the risk-elimination effect is outweighed by the prize effect, which

emerges only for cA (j) 6= cB (j).

Turning to general cases of unequal R&D costs across industries, we distinguish the following

three cases:

Case (i) cA (j) � cB (j), i.e. �0 (J) � 0 for j 2 [0, 1] and

cB (0)

�F
<

L� �̄� � (0)

✓
,

cB (1)

�I
>

L� �̄� � (1)

✓
(21)

Case (ii) cA (j) < cB (j), i.e. �0 (J) < 0 for j 2 [0, 1] and (21)

Case (iii) cA (j) < cB (j), i.e. �0 (J) < 0 for j 2 [0, 1] and

cB (0)

�F
>

L� �̄� � (0)

✓
,

cB (1)

�I
<

L� �̄� � (1)

✓
(22)
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where

�F ⌘ [(1� �)� � � (⇢+ 2↵)]
� (1� ✓)

⇢
, �I ⌘ [(1� �)� � �⇢]

� (1� ✓)

⇢
.

By Lemma 7, the (LM) curve is downward-sloping (or vertical) in (E, J) space in Case (i) and

upward-sloping in Cases (ii) and (iii).

Let us consider each case in turn. Figure 5 illustrates Case (i), where cA (j) > cB (j). 20 (The

special case, with cA (j) = cB (j), was already examined above.) By Lemma 7, the (LM) curve is

downward-sloping.21 Figure 5 indicates that JF < JI . Then, the growth equation (TP ) implies

gF > gI ; first-to-file promotes faster economic growth.22 This is qualitatively the same result as in

the partial equilibrium case. To develop the intuition which will turn out useful later, note that the

E, and hence ⇧, is higher in first-to-file than in first-to-invent, which by Lemma 6 implies that the

prize effect makes patenting less attractive in first-to-file than in first-to-invent. However, in the

present case, the prize effect is dominated by the risk-elimination effect that works against patenting

in determining JF and JI , as shown in Figure 5.

We turn to Cases (ii) and (iii), where cA (j) < cB (j). In Lemma 7, we showed that for cA (j) <

cB (j) the (LM) curve slopes upward, implying a positive relationship between E and J . This

relation arises because an increase in J reduces labor demand in R&D, thereby shifting labor to the

production sector and raising E and hence prize ⇧. In general, as cB (j) increases relative to cA (j),

a rise in J brings about a larger increase in E, flattening the (LM) curve. As we will see shortly,

this result can amplify the prize effect, possibly reversing the Scotchmer-Green result.

Let us first consider Case (ii). In this case, the difference between cB (j) and cA (j) is relatively

small, so that (LM) cuts the the threshold conditions (THF ) and (THI) “from below,” as shown in

Figure 6. As a consequence, JF < JI , and hence gF > gI , which is qualitatively equivalent to Case

(i).23 Intuitively, Figure 6 shows that E (hence ⇧) is lower in first-to-file than in first-to-invent,

implying that patenting is a more attractive option in first-to-file. In this sense, the prize effect

reinforces the risk-elimination effect of patenting so that gF is even greater relative to gI compared

with Case (i). However, this result dramatically changes in Case (iii), to which we turn next.
20In Figure 5, each side of the two inequality conditions in (21) defines the “corner values” of the (THF ), (THI)

and (LM) curves at J = 0 and J = 1.
21This curve starts from a point to the right of the (THF ) curve on the horizontal axis and ends at a point to the

left of the (THI) curve for J = 1.
22(21) guarantees the existence of a unique interior equilibrium.
23The inequality conditions in (21) ensure the existence of an interior equilibrium.
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Figure 7 illustrates the case, where the (LM) curve intersects the (THk) curves (k = F, I) “from

above” unlike in Cases (i)-(ii). This arises if the difference between cB (j) and cA (j) is sufficiently

large. It is clear from the figure that JF > JI and hence gF < gI ; first-to-invent promotes faster

economic growth than first-to-file, a result that contrasts sharply with the Scotchmer-Green result

and those from the previous cases. This reversal can be explained intuitively as follows. In the

present case, E (hence ⇧) is smaller in first-to-invent than in first-to-file in equilibrium. That is,

the prize effect, which is endogenously determined through the labor market, is so large that it

dominates the risk-elimination effect, inducing A to be patented in a greater number of industries

in first-to-invent, thereby leading to a higher growth rate comapred with first-to-file.

Unlike Cases (i) and (ii), Case (iii) can have, in addition to the interior equilibrium, the corner

solutions at 8
>><

>>:

E0 =
L� �̄� � (0)

✓

JF = JI = 0

8
>><

>>:

E1 =
L� �̄� � (1)

✓

JF = JI = 1

where E0 and E1 are consumption expenditure when J = 0 and J = 1, respectively, for J = JF , JI .

Figure 8 is instrumental in explaining this result. To ease exposition, only the (THI) line (for the

first-to-invent system) is drawn for three different values of ⇧ =
� (1� ✓)

⇢
E in (17). The middle

curve defines the threshold industry JI , which corresponds to the interior equilibrium in Figure 7.

The upper line, on the other hand, characterizes a corner solution C in Figure 8, which corresponds

to E0 =
L� �̄� � (0)

✓
in Figure 7. For the existence of this equilibrium, the following condition

must hold:
cB (0)

�F
� E0 =

L� �̄� � (0)

✓
. (23)

The left inequality comes from the fact that (2) is positive at C, and the right equality is due to

the labour market condition (LM). Similarly, a corner equilibrium D in Figure 8 corresponds to

E1 =
L� �̄� � (1)

✓
in Figure 7, and requires

cB (1)

�F
 E1 =

L� �̄� � (1)

✓
. (24)

The same reasoning applies to the first-to-file case, yielding similar conditions as above. Importantly,

the conditions (23) and (24) and similar conditions for the first-to-file system are all consistent with

(22). That is, a unique interior equilibrium coexists with those corner solutions.
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The next proposition summarizes what we found so far in this section:

Proposition 4. There exists an equilibrium such that JF > JI and gF < gI for cA (j) < cB (j).

4.4.2 Multiple Interior Equilibria

In the preceding section, we focused on cases of unique interior equilibrium. In Case (i), there is no

other equilibria since the (LM) curve is negatively sloped and hence can cross the (THk) curves,

k = F, I only once. However, in Cases (ii) and (iii), there can be multiple equilibria because the

(LM) and (THk) curves, k = F, I, are both positively sloped. In this subsection we examine such

possibilities.24

In general, Case (ii) admits odd numbers of interior equilibria. Figure 9 shows three equilibria

in each patent system. Let us label the three pairs of equilibrium borderline industries by
�
J1
F , J

1
I

�
,

�
J2
F , J

2
I

�
and

�
J3
F , J

3
I

�
. Note that at

�
J2
F , J

2
I

�
and

�
J3
F , J

3
I

�
, the (LM) curve cuts the (THk) curves

(k = F, I) “from below”, whereas at
�
J1
F , J

1
I

�
the (LM) curve cuts the (THk) curves (k = F, I) “from

above”. In the latter case, we have J1
F > J1

I and hence g1F < g1I , which reverses the Scotchmer-Green

result. The same reasoning can be applied to the case of m equilibria (m = 3, 5, 7, 9...).

In Case (iii), by contrast, interior equilibria can occur in odd or even numbers. Figure 10 depicts

the case of three equilibria, with the Scotchmer-Green result reversed at
�
J2
F , J

2
I

�
and

�
J3
F , J

3
I

�
where

the (LM) curve cuts the (THk) curves (k = F, I) “from above”. When there are even numbers of

interior equilibria, there can be two types. The first type arises if the following conditions hold:

cB (0)

�F
<

L� �̄� � (0)

✓
,

cB (1)

�F
<

L� �̄� � (1)

✓
. (25)

Figure 11 shows the case of two interior equilibria, where the above conditions are met. It is clear

from the figure that the the Scotchmer-Green result is reversed at
�
J1
F , J

1
I

�
, where the (LM) curve

cuts the (THk) curves (k = F, I) “from above”. We have the second type if the following inequalities

hold:
cB (0)

�I
>

L� �̄� � (0)

✓
,

cB (1)

�I
>

L� �̄� � (1)

✓
. (26)

Figure 12 illustrates the case with two interior equilibria, where the above inequalities are satisfied.

Again, the Scotchmer-Green result is reversed at
�
J2
F , J

2
I

�
, where the (LM) curve cuts the (THk)

24We focus on �0 (J) > 0 and do not consider the case where the sign of �0 (J) changes, i.e. �0 (J) T 0, because the
latter sheds little new light on the issue at hand, though it is more general.
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curves (k = F, I) “from above.” The case of m equilibria where m = 2, 3, 4, 6, ... can be analyzed

similarly.

We have established the following result:

Proposition 5. If there is a multiplicity of interior equilibria, there is at least one interior equilib-

rium in which the Scotchmer-Green result is reversed .

4.5 Discussion: How “Plausible” Is It?

We have seen that in cases of multiple equilibria the the Scotchmer-Green result is reversed at least

in one interior equilibrium. But how “plausible” is it? We now address this question. Since reversals

occur in the presence of multiple equilibria, one possible way to reduce the number of equilibria is

to appeal to stability analysis. However, it is not particularly useful in the present analysis since

we focus on steady state throughout. Instead, we examine whether our model is consistent with

the standard growth models and empirical works in terms of the predictions they make. For this

purpose, we focus on the rate of subjective time preference ⇢. There are two reasons for the selection

of this criterion. Firstly, the effect of ⇢ is widely known in growth models. Secondly, reversals occur

only in the general equilibrium model, where consumer spending plays an important role.

Intuitively, a greater degree of patience is good for growth. Growth is driven by accumulation of

physical and human capital and technical progress, all of which require investment in one form or

another. And patience is an important determinant of deferred consumption and hence investment,

affecting income levels and growth. Indeed, this intuition is consistent with the standard models of

economic growth. According to the Ramsey-Cass-Koopmans model, income levels are higher with

a lower rate of time preference. In the endogenous growth literature, both the AK model and the

Lucas model of human capital accumulation imply faster growth when consumers are more patient.

The standard R&D-based models of Romer (1990), Aghion and Howitt (1992) and Grossman and

Helpman (1991) on which the current model is based, as well as a myriad of other growth models

yield similar predictions.

Turning to empirical evidence, Dohmen, et. al. (2016) directly tackle the issue of how patience

affects income/growth. Using a dataset of 8,000 individuals from 76 countries, they find that patience

alone explains about 40% of income variations across samples in a univariate regression. Their study

also reports a strong correlation between patience and economic growth in the medium-run growth

after World War II as well as over the past 200 years. Hübner and Vannoorenberghe (2015) conduct
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a similar analysis. Using a panel of 89 countries, they find a sizable impact of patience on income

per worker, total factor productivity, and capital stock in 2000. In a different approach, Galor and

Özak (2016) argue that growth-conducive environments lead to a greater degree of patience. On an

individual level, Mischel et al. (1992) report that patient children are more likely to take formal

education and acquire higher incomes in their later life. From a historical perspective, Clark (2007)

argue that patience drives economic development. All these studies indicate that growth is higher

with a lower value of the rate of time preference ⇢.

We now examine whether our model yields a prediction which are consistent with our intuition,

the standard growth models and the empirical evidence above. In our model, changes in ⇢ affect the

threshold conditions (THF ) and (THI) only. In particular, a fall in ⇢ (a greater degree of patience)

causes the (THk) curve, k = F, I, to shift up. With this result on hand, consider first the unique

interior equilibrium cases. In Cases (i) and (ii) in Figures 4-6, the upward shifting (THF ) and (THI)

curves cause JF and JI to rise, implying slower economic growth. This is contrary to the evidence

discussed above. In Figures 7, on the other hand, a lower ⇢ causes JF and JI to fall, leading to

faster economic growth. This is consistent with the predictions of the standard growth models, the

evidence, and our intuition regarding the effect of a greater degree of patience. Thus, an equilibrium

is consistent with theory and evidence only where the (LM) curve cuts the (THF ) and (THI) curves

“from above”, that is, the Scotchmer-Green result is reversed.

It is easily confirmed that the above conclusion holds when there are multiple interior equilibria,

as in Figures 9-12. That is, only when the (LM) curve intersects the (THF ) and (THI) curves “from

above”, the equilibrium is consistent with empirical evidence and the predictions from the standard

growth models, and in such equilibriums the Scotchmer-Green result is reversed.

5 Conclusion

In the paper, we present an R&D-based model of economic growth, where discoveries of blueprints

for intermediate goods take two innovations, and where innovators strategically decide whether or

not to patent their innovations in the spirit of Scotchmer and Green (1990). We assume asymmetric

R&D costs across intermediate industries and explore how incentives to patent innovations are de-

termined by the choice between two patent-issuing rules: first-to-file and first-to-invent. In addition

to presenting a growth model with these new features, our focus is on the question of which rule is
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more conducive to product development and economic growth. Our conclusion is that first-to-invent

promotes faster growth than first-to-file. Thus, if our analysis is correct, we are in a “wrong” patent

regime.

To save space we present the analysis based on inter-industry R&D cost differences. However,

our result is robust if industries are differentiated with respect to the distributive shares of the prize

between innovators of first-stage and second stage innovations (see footnote 5). Admittedly, other

assumptions can potentially influence the conclusion of our model. Thus it is important to point

out two obvious limitations of our model.

First, to follow the Scotchmer-Green framework, we assume that the arrival rates of intermediate

and final innovations are fixed. This assumption is made to extend their analysis to a growth

context and also useful in simplifying the general-equilibrium model. However, it comes at a cost.

Suppose an economy switches from first-to-invent to first-to-file. Its total impact can be decomposed

into two component effects: (1) the effect on growth realized for given arrival rates, and (2) the

remaining effect on growth through changes in arrival rates. The present analysis captures (1) only.

A future work should try to endogenize arrival rates,. Such work will also verify whether the result

of Miyagiwa and Ohno (2015) mentioned in the Introduction holds in a growth context. Second,

there is no free entry into the R&D sector in our model. This may be justifiable due to fixed

entry cost. However, allowing free entry is a natural extension of the model. However, with free

entry, the underlying mechanism that operates through consumer spending and the labor market

and partitions of industries into patenting and non-patenting nonetheless remains intact and hence

we conjecture that free entry is unlikely to alter our conclusion. Finally, the robustness of our result

should be checked in alternative models of growth, for example, those based on quality improvement.

We leave these extensions for future research.
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Figure 1: The leader decides on whether or not to patent the intermediate innovation at node DL,
and the follower decides on patenting at node DF . ↵L and �L mean that the leader succeeds in the
intermediate and final innovations, respectively. Similarly, ↵F and �F are for the follower. Firms
conduct R&D at nodes 0, 1, 2, 3 and 4.
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Figure 2: Determination of the threshold industries.
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Figure 3: Transition of industries.
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Figure 4: Partial equilibrium in Section 3 is essentially equivalent to a general equilibrium model
with cA (j) = cB (j) for all j.
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Figure 5: Equilibrium in Case (i).
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Figure 6: Equilibrium in Case (ii).
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Figure 7: Equilibrium in Case (iii).
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Figure 8: A unique interior equilibrium coexists with two corner solutions in Case (iii).
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Figure 9: The reversal of the Scotchmer-Green result occurs at
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Figure 10: The reversal of the Scotchmer-Green result occurs at
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Figure 11: The reversal of the Scotchmer-Green result occurs at
�
J1
I , J

1
F

�
.

Fig12.pdf

Figure 12: The reversal of the Scotchmer-Green result occurs at
�
J2
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.
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